Currently available data suggest that DNA aneuploidy is associated with aggressive behavior of and unfavorable prognosis in several malignant human tumors as compared with diploid malignancies. However, the diagnostic and prognostic importance of flow cytometric DNA measurements in the case of thyroid neoplasms remains controversial. Therefore, the aim of our study was to evaluate utility of DNA index (DI) and proliferative index (PI) in distinguishing benign from malignant thyroid lesions taking into account the possible influence of intra-tumor heterogeneity and tissue preparation mode on DNA flow-cytometry measurements. A retrospective study was performed on 71 paraffin-embedded specimens from 57 patients with benign and malignant thyroid pathologies: 13 colloid goitres, 12 parenchymatous goitres, 19 adenomas and 13 carcinomas. In 14 of 57 cases two separate specimens taken from different areas of the same lesion were analysed and DNA parameters were compared. Additionally, flow cytometry DNA analysis was parallelly performed on 3 adjacent but differently processed tissue sections (fresh, formalin-fixed and paraffin-embedded) taken from each of 26 surgically excised thyroid lesions. DNA content was also analysed in both fresh and formalin-fixed twin specimens of normal pig thyroid glands (N = 6). We demonstrated that all tumors diagnosed as thyroid carcinomas were associated with abnormal nuclear DNA content although aneuploidy was not found specific to malignant thyroid tumors. Aneuploid samples of benign thyroid lesions exhibited higher proliferative activity, expressed as mean PI values, than diploid ones. In carcinomas the mean PI values were significantly higher than in benign lesions, independently whether they concerned aneuploid or diploid tissues. Considering intra-tumor heterogeneity, the flow cytometric DNA parameters can be assumed as reproducible despite differences in the mode of tissue fixation and preparation for analysis.
Currently available data suggest that DNA aneuploidy is associated with aggressive behavior of and unfavorable prognosis in several malignant human tumors as compared with diploid malignancies. However, the diagnostic and prognostic importance of flow cytometric DNA measurements in the case of thyroid neoplasms remains controversial. Therefore, the aim of our study was to evaluate utility of DNA index (DI) and proliferative index (PI) in distinguishing benign from malignant thyroid lesions taking into account the possible influence of intra-tumor heterogeneity and tissue preparation mode on DNA flow-cytometry measurements. A retrospective study was performed on 71 paraffin-embedded specimens from 57 patients with benign and malignant thyroid pathologies: 13 colloid goitres, 12 parenchymatous goitres, 19 adenomas and 13 carcinomas. In 14 of 57 cases two separate specimens taken from different areas of the same lesion were analysed and DNA parameters were compared. Additionally, flow cytometry DNA analysis was parallelly performed on 3 adjacent but differently processed tissue sections (fresh, formalin-fixed and paraffin-embedded) taken from each of 26 surgically excised thyroid lesions. DNA content was also analysed in both fresh and formalin-fixed twin specimens of normal pig thyroid glands (N = 6). We demonstrated that all tumors diagnosed as thyroid carcinomas were associated with abnormal nuclear DNA content although aneuploidy was not found specific to malignant thyroid tumors. Aneuploid samples of benign thyroid lesions exhibited higher proliferative activity, expressed as mean PI values, than diploid ones. In carcinomas the mean PI values were significantly higher than in benign lesions, independently whether they concerned aneuploid or diploid tissues. Considering intra-tumor heterogeneity, the flow cytometric DNA parameters can be assumed as reproducible despite differences in the mode of tissue fixation and preparation for analysis.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.