Solvent extraction was used to recover nickel and zinc from synthetic acidic solution. Many leaching solution and waste waters contain both zinc and nickel at the same time. Bis (2,4,4trimethylpentyl) phosphinic acid (Cyanex 272) and Di(2-ethylhexyl) phosphoric acid (D2EHPA) were used to separate nickel and zinc. In the D2EHPA system, at equilibrium pH of 2, zinc extraction was more than 98% whereas nickel extraction was only 0.36%. The extraction of metals was found to increase with an increase of pH of the aqueous phase. At equilibrium pH 3.5, zinc extraction was completed and higher than 99% zinc was extracted using Cyanex 272. The maximum nickel extractions using D2EHPA and Cyanex 272 were achieved at equilibrium pH 4.5 and 7.5, respectively. Both extractants showed the relatively good separation levels between nickel and zinc. D2EHPA and Cyanex 272 isotherms for single metal solutions showed that the extraction order was Zn2+>Ni2+. ΔpH1/2 value showed that the separation of nickel and zinc using Cyanex 272 was simpler than D2EHPA system. The stripping study was performed using sulphuric acid and it was shown that above 98% zinc and nickel could be extracted. These results demonstrated separation of zinc and nickel from sulphate solutions to be favorable.
Considering the advantages of hollow fiber supported liquid membrane (HFSLM), it has been applied for extraction of Co(II) with a motivation to extract cobalt from various waste resources. Extraction efficiency and transport behavior of Co(II) through HFSLM containing Cyanex 272 diluted in kerosene were investigated. Experiments were performed as a function of aqueous feed solution velocity (1000 mL/min) for both feed and strip, pH of feed solution in the range of 4.00-6.75, the carrier concentration of 25-1000 mol/m3, and acid concentration in strip solution of 1-500 mol/m3 on. The mass transfer rate or flux J Co(II), which is a function of metal concentration, volume of solution, and membrane area were analyzed. The optimum condition for extraction of Co(II) was pH of 6.00, Cyanex 272 concentration of 500 mol/m3 and H2 SO4 concentration of 100 mol/m3.
Transport of Cr(III) ions through a mix carrier supported liquid membrane (SLM) was studied. A mixture of D2EHPA and Cyanex272 was used as a carrier. It was observed that the effectiveness of the process depends on the concentration ratio of carriers in the liquid phase. There is a threshold concentration of the carriers in the membrane phase, above which the efficiency was decreased. The threshold concentration of carriers mixtures for Cr(III) ions transport was obtained when 30% of D2EHPA was added to the 5% of Cyanex272. This composition allows one to shorten the time from 5 to 1.5 hours and to remove ~98% of Cr(III). The value of flux increased 3-fold and the effectiveness also increased.
PL
Przeprowadzono badania transportu jonów Cr(III) przez dwuprzenośnikową immobilizowaną membranę ciekłą. Do transportu jonów Cr(III) zastosowano mieszaninę przenośników Cyanex272 i D2EHPA. Stwierdzono, że efektywność procesu zależy od stosunku stężeń przenośników w fazie membranowej. Zaobserwowano wzrost efektywności przenoszenia jonów Cr(III), jednak do pewnego progowego stężenia drugiego przenośnika w membranie, po przekroczeniu którego wydajność spadała. W układzie z Cyanex272 i D2EHPA dla transportu Cr(III) przez SLM ich progowe stężenia to odpowiednio 5% i 30%. Membrana o takim składzie umożliwia trzykrotne zwiększenie strumienia, a tym samym zwiększa się efektywność procesu. Czas trwania procesu został skrócony z 5 h (dla samego D2EHPA) do 1,5 h, co umożliwiło usunięcie ~98% chromu z roztworu.
Waste phosphors contain rare earth elements (REEs) such as yttrium (Y), europium (Eu), cerium (Ce), terbium (Tb) and lanthanum (La). Separation of these REEs from the leaching solution of waste phosphors was investigated by solvent extraction with single Cyanex 272, binary mixture (mixture of Cyanex 272 and Alamine 336), ionic liquid (prepared by Cyanex 272 and Aliquat 336) in kerosene. The effect of solution pH and extractants concentration was mainly investigated. The results indicated that Y(III) was selectively extracted by single Cyanex 272 over the other four REEs from the HCl solution with initial pH range from 3 to 5. Synergistic extraction with the binary mixture was enough for the extraction of Y(III), Tb(III) and Eu(III) with a small amount of Ce(III). Scrubbing with pure Y(III) solution with intermediate acidity was effective in scrubbing Ce(III) from the loaded binary mixture organic phase. Stripping behavior of the Y(III), Tb(III) and Eu(III) by HCl solution was similar to each other. Tb(III) and Eu(III) can be separated by extraction with the binary mixture followed by scrubbing with pure Tb(III) solution. McCabe-Thiele diagrams were constructed for the extraction of Y(III) by single Cyanex 272 and that of Tb(III) by the mixture. A process was proposed for the separation of REEs from the leaching solution of waste phosphors by solvent extraction.
The extraction of light rare earths (Pr and Nd) from chloride medium was investigated using a mixture of di(2-ethylhexyl) phosphoric acid (P204) and bis(2,4,4-trimethylpentyl) phosphinic acid (Cyanex272) in sulfonated kerosene. The P204+Cyanex272 system exerted a synergistic effect on the separation of light rare earths, and the separation coefficient was higher than when P204 and Cyanex272 were used as extractants alone. The separation coefficient of Pr and Nd in the extraction system reached 1.75 when the pH of the aqueous phase material solution was approximately 2.5, and 1.5 mol/L hydrochloric acid as a stripping agent effectively eluted the rare earth ions in the loaded organic phase. Combining the slope method, infrared spectroscopy, and nuclear magnetic resonance spectroscopy, we explored the mechanism of the extracted Nd and Pr into the organic phase complex, and finally entered the organic phase with Re(HA2)2B. The P-O-H bond and P=O bond in the extractant P204 and Cyanex272 formed a coordination bond with Re3+. Therefore, this extraction method also provides a reference for a more environmentally friendly and efficient procedure for separation and purification of light rare earth elements Pr and Nd.
In this work, separation of cobalt(II) over lithium(I) ions from aqueous chloride solutions by synergistic solvent extraction (SX) has been studied. A synergistic mixture of commercial extractants such as bis(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272) and tributyl phosphate (TBP) in kerosene was used as a selective extractant. The investigations were first performed to select optimal conditions for the effective separation including pH of the aqueous phase as well as concentration of synergistic mixture. High selective solvent extraction of cobalt(II) over lithium(I) from chloride solution has been achieved by the mixture of 0.1 M Cyanex 272 and 0.05 M TBP in kerosene while efficient Co(II) stripping has been performed by 0.5 M sulphuric acid.
This study was conducted to treat radioactive acidic wastewater, which contained radioactive 60Co and 152Eu. The wastewater can be generated during a decommissioning project to reduce the volume of radioactive concrete waste from nuclear facilities. With a variety of methods for separating the radioactive nuclides available, we evaluated the separation applicability of the solvent extraction method. From our results, Co and Eu could be easily extracted from the Ca rich wastewater using Cyanex301 (Co extraction (%) 99.8, Eu extraction (%) 99.6) without Ca extraction. On the other hand, Eu could be selectively separated by Cyanex272 (Eu extraction (%) 99.1) without Co and Ca extraction at pH 2~3. Therefore, the extraction method can be tailored according to the target radionuclides present in the wastewater and be selectively applied to the overall treatment process. By extracting radioactive Co and Eu from acidic wastewater to below the discharge criteria, treated wastewater could be regarded as non-radioactive industrial waste, to be economically and easily handled. Moreover, it may be possible to reuse separated Co and Eu for research and industrial applications by realizing waste valorization.
The demand for cobalt has increased significantly in recent years due to its use in a wide variety of products and processes. Cobalt and nickel often accompany each other in nature and close physicochemical properties of both metals make their separation a complicated practical problem. Organophosphorous extractants have been widely used to separate cobalt from nickel. This paper presents the preliminary results obtained for separation of cobalt from nickel using Cyanex 272 containing supported liquid membranes prepared by a novel ultrasound-assisted method. The results show that this novel supported liquid membrane preparation method leads to higher separation factors than those described in the literature under similar separation conditions.
9
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This work explains the application of plasticized cellulose triacetate (CTA) membranes with Cyanex 272 di(2,4,4-(trimethylpentyl)phosphinic acid) and Cyanex 301 (di(2,4,4-trimethylpentyl)dithiophosphinic acid) as the ion carriers of lanthanum(III) and cerium(III). CTA is used as a support for the preparation of polymer inclusion membrane (PIM). This membrane separates the aqueous source phase containing metal ions and the receiving phase. 1M H2SO4 is applied as the receiving phase in this process. The separation properties of the plasticized membranes with Cyanex 272 and Cyanex 301 are compared. The results show that the transport of cerium(III) through PIM with Cyanex 272 is more efficient and selective than lanthanum(III).
10
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
A full sequence of investigations was performed with a purpose to develop adequate extraction technologies for the purification of a few typical industrial, both sulphate and chloride, heavily contaminated zinc(II) solutions. These covered: i) independent measurements of individual cation extraction versus pH and extraction isotherms with commercially available extractants, ii) the design of individual extraction systems for the chosen extractants, iii) the counter-current batch-wise full process imitations in a laboratory glass with the use of di(2-ethylhexyl)phosphoric acid (DEHPA) and di(2,4,4-trimethylpentyl)phosphinic acid (Cyanex 272), iv) pilot trial with the use of DEHPA, executed on train of mixer-settler type extractors, working continuously.
11
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Potentials of the solvent extraction method for separation of contaminants, especially Co(II), from nickel(II) sulphate solutions have been reviewed. Properties of most important and commercially available organic preparations, making extractive separation of these elements possible, have been shortly characterized. On the basis of laboratory investigations, behaviour of cationic liquid ion exchangers, Cyanex 272 and Cyanex 302, used for Co(II) and Ni(II) separation, has been compared. Co-extraction isotherms of most important contaminants, including Zn(II), Cu(II) and Co(II), with Cyanex 272, from solutions of nickel(II) sulphate have been examined. Next, the extractant has been applied to purification of the so called crude nickel(II) sulphate or CNS from the contaminants. The CNS, a commercial product of technical grade, produced by Polish copper smelters, had been previously, before its further extractive purification treatment, prepared by leaching and dissolution in deionised water and by preliminary hydrometallurgical (oxy-hydrolytic) purification from iron(II), iron(III), arsenic(III), arsenic(V) and similar elements. Pilot apparatus with continuous flow of all media, applied to the CNS purification, consisted of 5 extractors of the mixer-settler type, joined together to make adequate counter-current system 1-2-0-2. Washing of the organic phase had not been applied because of purposeful preparation of the system merely for common, not selective, collecting of all metal ions, contaminating CNS. The system has reached an excellent purification level of nickel(II) sulphate. Obtained, as an additional product, the cobalt(II) sulphate concentrate (stripped solution) was almost totally neutralised (pH > 3.5).
PL
Dokonano przeglądu literaturowego potencjalnych metod ekstrakcyjnego oddzielania zanieczyszczeń, w szczególności Co(II), z roztworów siarczanu niklu(II). Krótko scharakteryzowano właściwości ważniejszych dostępnych na rynku preparatów organicznych, umożliwiających ekstrakcyjne oddzielanie tychże zanieczyszczeń. Na podstawie badań laboratoryjnych porównano zachowanie się ciekłych wymieniaczy jonowych, Cyanexu 272 oraz Cyanexu 302, wobec Co(II) i Ni(II). Wykorzystując Cyanex 272 zbadano izotermy współekstrakcji najważniejszych zanieczyszczeń, w tym Zn(II), Cu(II) i Co(II), z bogatych roztworów siarczanu niklu(II). Następnie, ekstrahent ten został zastosowany do głębokiego oczyszczenia surowego siarczanu niklu(II) (SSN), od tych zanieczyszczeń. SSN jest technicznej jakości produktem handlowym, produkowanym przez polskie huty. Przed obróbką ekstrakcyjną, został wstępnie przygotowany poprzez roztworzenie w gorącej wodzie zdemineralizowanej i hydrometalurgiczne (oksyhydrolityczne) oczyszczenie od żelaza(II), żelaza(III), arsenu(III), arsenu(V), itp. Aparatura pilotowa, o ciągłym przepływie mediów roboczych, zastosowana do oczyszczania SSN, składała się z 5 ekstraktorów typu mieszalnik-odstojnik, połączonych w odpowiedni układ przeciwprądowy typu 1-2-0-2. Nie zastosowano przemywania fazy organicznej ekstrahenta ze względu na świadome przygotowanie systemu wyłącznie do wspólnego, nie selektywnego, oddzielenia wszystkich jonów, zanieczyszczających SSN. Uzyskano znakomity poziom oczyszczenia siarczanu niklu(II). Pozyskany ponadto dodatkowy produkt, koncentrat siarczanu kobaltu(II) (roztwór poreekstrakcyjny) był niemal całkowicie neutralny (pH > 3,5).
Zbadano zjawisko powstawania wody w membranie ciekłej zawierającej D2EHPA oraz CYANEX272 w roli przenośników jonów. W układzie zachodzi micelizacja cząsteczek D2EHPA, a w powstających agregatach tworzą się przestrzenie/kanały transportowe umożliwiające przepływ jonów Cr(III). CYANEX 272 nie tworzy tak rozbudowanych struktur. Opisany mechanizm transportu stanowić będzie podstawę teoretyczną do opracowania modelu matematycznego dla transportu jonów Cr(III) w badanym układzie z SLM.
EN
A phenomenon of water formation in the liquid membrane containing D2EHPA and CYANEX272 as ions carriers was investigated in the paper Micellization of the D2EHPA particles occurs in the system. Transportation spaces/channels are formed inside created aggregates allowing the flow c Cr(III) ions. CYANEX 272 does not create such large structures. This transportation mechanism should provide a theoretical basis for the mathematical model of Cr (III) transportation in the system studied.
13
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Cyanex 272 and di(2-ethylhexyl)phosphoric acid (DEHPA) were used for extraction of zinc(II) from sulphate solutions. Counter-current extraction-stripping process was simulated. The simulation enabled CYANEX 272 to be selected for the recovery of zinc(II) from acidic sulphate solutions. A higher selectivity of zinc(II) extraction was the main benefit of using CYANEX 272. Technologically significant conclusions could be arrived at only when process solutions with metal contaminants were used for the studies and several extraction-washing-stripping cycles were carried out. The studies of individual extraction and/or stripping using model solutions could be only considered as an initial step and were of a limited technological value.
PL
Cyanex 272 oraz kwas di(2-etyloheksylo)fosforowy (DEHPA) zastosowano do ekstrakcji cynku(II) z procesowych roztworów siarczanowych zawierających dodatkowo Cu(II), Cd(II), Na(I), K(I), Mg(II), Ca(II) i As(V). Symulowano przeciwprądowy proces ekstrakcyjno-reekstrakcyjny. Symulacja pozwoliła wytypować Cyanex 272 jako odpowiedni ekstrahent do selektywnej ekstrakcji cynku(II) wobec występujących zanieczyszczeń. Tylko zastosowanie prawdziwych roztworów technologicznych i prowadzenie pełnego cyklu ekstrakcji - przemywania i reekstrakcji umożliwia wyprowadzenie technologicznie rozsądnych wniosków. Badanie indywidualnego etapu ekstrakcji lub reekstrakcji posiada ograniczone technologiczne znaczenie.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.