Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Convolutional Neural Network
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Graphics processing units (GPU) have become the foundation of artificial intelligence. Machine learning was slow, inaccurate, and inadequate for many of today’s applications. The inclusion and utilization of GPUs made a remarkable difference in large neural networks. The numerous core processors on a GPU allow machine learning engineers to train complex models using many files relatively quickly. The ability to rapidly perform multiple computations in parallel is what makes them so effective; with a powerful processor, the model can make statistical predictions about very large amounts of data. GPUs are widely used in machine learning because they offer more power and speed than CPUs. In this paper, we show the use of GPU for solving a scheduling problem. The results show that this idea is useful, especially for large optimization problems.
EN
This paper proposes navigation of multiple autonomous underwater vehicles (AUVs) by employing machine learning approach for wide area surveys in underwater environment. Wide area survey in underwater environment is affected by low data rate. We consider two AUVs moving in formation through clustering followed by selection of optimal path that is affected by low data rate and limited acoustical underwater communication. A state compression approach using machine learning based acoustical localization and communication (ML-ALOC) is proposed to overcome the low data rate issue in which AUV states are approximated by Hierarchical clustering followed by an optimal selection approach using Convolutional Neural Network (CNN). The performance of the proposed state compression algorithm is compared with particle state compression algorithm based on K-Means clustering at each iteration followed by Akaike information criterion (AIC) pursuing extensive simulations, in which two AUVs navigate through trajectory. It is observed from the simulations that the proposed ML-ALOC system provides better estimates when compared with acoustical localization and communication (ALOC) system using particle clustering for state compression scheme.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.