Let A and B be uniformly closed function algebras on locally compact Hausdorff spaces with Choquet boundaries Ch A and ChB, respectively. We prove that if T: A → B is a surjective real-linear isometry, then there exist a continuous function κ: ChB → {z ∈ ℂ: |z| = 1}, a (possibly empty) closed and open subset K of ChB and a homeomorphism φ: ChB → ChA such that T(f) = κ(f ∘φ) on K and $T\left( f \right) = \kappa \overline {fo\phi }$ on ChB \ K for all f ∈ A. Such a representation holds for surjective real-linear isometries between (not necessarily uniformly closed) function algebras.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let A and B be unital, semisimple commutative Banach algebras with the maximal ideal spaces M A and M B, respectively, and let r(a) be the spectral radius of a. We show that if T: A → B is a surjective mapping, not assumed to be linear, satisfying r(T(a) + T(b)) = r(a + b) for all a; b ∈ A, then there exist a homeomorphism φ: M B → M A and a closed and open subset K of M B such that $$ \widehat{T\left( a \right)}\left( y \right) = \left\{ \begin{gathered} \widehat{T\left( e \right)}\left( y \right)\hat a\left( {\phi \left( y \right)} \right) y \in K \hfill \\ \widehat{T\left( e \right)}\left( y \right)\overline {\hat a\left( {\phi \left( y \right)} \right)} y \in M_\mathcal{B} \backslash K \hfill \\ \end{gathered} \right. $$ for all a ∈ A, where e is unit element of A. If, in addition, $$ \widehat{T\left( e \right)} = 1 $$ and $$ \widehat{T\left( {ie} \right)} = i $$ on M B, then T is an algebra isomorphism.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.