This article presents typical ship collision scenarios, simulated using the evolutionary path planning system and analyses the impact of the fitness function scaling on the quality of the solution. The function scaling decreases the selective pressure, which facilitates leaving the local optimum in the calculation process and further exploration of the solution space. The performed investigations have proved that the use of scaling in the evolutionary path planning method makes it possible to preserve the diversity of solu-tions by a larger number of generations in the exploration phase, what could result in finding better solution at the end. The problem of avoiding collisions well fitted the algorithm in question, as it easily incorporates dynamic objects (moving ships) into its simulations, however the use scaling with this particular problem has proven to be redundant.
This paper proposes a collision model for ships underway and temporary objects as an extension to state-of-the-art maritime risk assessment like IALA iWrap MkII. It gives a brief review of frequency modeling’s and consequence calculation theory as well as its applications, before it analogously derives a model to assess the risk of anchorage areas. Subsequently, its benefit is demonstrated by an example scenario.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.