The e-Navigation initiative of IMO and IALA has stimulated and inspired a number of ambitious research projects and technological developments in the maritime field. The global transportation of goods is not only facing rapidly growing ship dimensions but also increasing industrial off shore activities, changing the relation between the need of areas for safe and reliable vessel traffic and its availability. Off shore activities is increasingly limiting the available navigable spaces and concentrating traffic flows, especially in coastal waters and port approaches. Enhanced technical systems and equipment with numerous added functionalities are in use and under further development providing new opportunities for traffic surveillance and interaction. Integrated Bridge and Navigation Systems on board modern ships not only support the bridge teams and pilots on board, but also allow for more comprehensive shore-based traffic monitoring and even allow for re-thinking of existing regimes and procedures on traffic management. A sophisticated manoeuvring support tool using fast real-time simulation technology and its application for on board support as well as for its potential integration into enhanced shore-based monitoring processes when linked with the ‘Maritime Cloud’ will be introduced. The potential for contribution to generate harmonized collision warnings will be discussed and explained. This paper is a reviewed and extended version of (Baldauf, Benedict & Gluch, 2014).
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The tonic discussed is an non-traditional approach to the earliest possible clearing up of the head-on situation, consisting in defining the time of simultaneous approach to same latitudes and longitudes, bearing in mind that the information about the ships' movement was received by means of Automatic Identification System. If the time the ships proceed to these latitudes and longitudes is the same the collision of the ships is unavoidable and by the time identified the head-on situation is immediately indicated. If the time is different the ships will not be able to reach the same point and the collision will be avoided. The attempts have been also made to evaluate the minimal admitted inequality of time when the ships' safe passage without maneuvering is considered possible. This method is rather attractive because it does not require any additional measurements and it is not neces-sary to attract the Officer-in-Charge away from his main responsibility – to control the situation round the ship.
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Analyzed one possible criteria of stating the fact of ships' meeting on reciprocal courses and proved that none of them can be judged with confidence of head-on situation. So, in fact Rule 14 of COLREG -1972 should be strictly adhered to: “ …When a vessel is in any doubt as to whether such a situation exists we shall assume that it does exist and act accordingly…”, i. e. alter the course to starboard.
The problem of vessel collisions or near-collision situations on sea, often caused by human error due to incomplete or overwhelming information, is becoming more and more important with rising maritime traffic. Approaches to supply navigators and Vessel Traffic Services with expert knowledge and suggest trajectories for all vessels to avoid collisions, are often aimed at situations where a single planner guides all vessels with perfect information. In contrast, we suggest a two-part procedure which plans trajectories using a specialised A* and negotiates trajectories until a solution is found, which is acceptable for all vessels. The solution obeys collision avoidance rules, includes a dynamic model of all vessels and negotiates trajectories to optimise globally without a global planner and extensive information disclosure. The procedure combines all components necessary to solve a multi-vessel encounter and is tested currently in simulation and on several test beds. The first results show a fast converging optimisation process which after a few negotiation rounds already produce feasible, collision free trajectories.
Typical approach to collision avoidance systems with artificial intelligence support is that such systems assume a central communication and management point (such as e.g. VTS station), usually located on shore. This approach is, however, not applicable in case of an open water encounter. Thus, recently a new approach towards collision avoidance has been proposed, assuming that all ships in the encounter, either restricted or open water, communicate with each other and negotiate their maneuvers, without involving any outer management or communication center. Usually the negotiation process is driven by the collision avoidance software and called auto-negotiation. This paper elaborates on data acquisition problem in case of the maneuver auto-negotiation. It focuses on ships' initialization in the system and data gathering.
Currently, Maritime safety is the best issue in the world. International Maritime organization (IMO) have recommended FSA methodology to enhance maritime safety. In this paper, the research conducted in the Malacca Strait. Malacca Strait is an area that has a high risk for shipping navigation. Many accidents occur in the area are like collision, fire, grounding and so on. Therefore a study on improving safety in this area is very important. it is to produce an output that can be used to provide input to the master and multiple stakeholders to improve safety on board at the time of sailing. In this study, AIS is used as a data source. Sea condition data collected actual traffic through the Automatic Identification System (AIS) equipment installed at Kobe University, Japan, and Universiti Teknologi Malaysia (UTM) in Johor, Malaysia. The data is applied to define a method with the help of Geographic Information Systems (GIS).
It is essential to evaluate safety of marine traffic for the improvement of efficiency and safety of marine traffic. Spread of AIS makes observation of actual marine traffic more easily and faster than before. Besides, description of collision avoidance behaviours of ships are indispensable to simulate a realistic marine traffic. It is important to develop and implement an algorithm of collision avoidance corresponding to a target traffic or target area into the marine traffic simulation because actual actions for collision avoidance depend on circumstances where ships are sailing. The authors developed an automated marine traffic simulation system with AIS data. And in this paper, we proposed a series of systematic procedures for marine traffic simulation including analysing for collision avoidance behaviours using AIS data.
More than 90% of world trade is transported by sea. The size and speed of ships is rapidly increasing in order to boost economic efficiency. If ships collide, the damage and cost can be astronomical. It is very difficult for officers to ascertain routes that will avoid collisions, especially when multiple ships travel the same waters. There are several ways to prevent ship collisions, such as lookouts, radar, and VHF radio. More advanced methodologies, such as ship domain, fuzzy theory, and genetic algorithm, have been proposed. These methods work well in one-on-one situations, but are more difficult to apply in multiple-ship situations. Therefore, we proposed the Distributed Local Search Algorithm (DLSA) to avoid ship collisions as a precedent study. DLSA is a distributed algorithm in which multiple ships communicate with each other within a certain area. DLSA computes collision risk based on the information received from neighboring ships. However, DLSA suffers from Quasi-Local Minimum (QLM), which prevents a ship from changing course even when a collision risk arises. In our study, we developed the Distributed Tabu Search Algorithm (DTSA). DTSA uses a tabu list to escape from QLM that also exploits a modified cost function and enlarged domain of next-intended courses to increase its efficiency. We conducted experiments to compare the performance of DLSA and DTSA. The results showed that DTSA outperformed DLSA.
The paper investigates the impact of a precise ship domain shape on the size of collision avoidance manoeuvres. The considered collision avoidance manoeuvres include both course and speed alterations. Various ship domains are compared with their polygonal approximations, which vary in the number of points of a domain contour and placement of these points. The best of all considered approximations is determined in the course of simulation experiments performed for head-on, crossing and overtaking situations. The chosen number and placement of contour points combine precision of domain approximation with reasonable computational time.
CRG casualties create one of the major type casualties in shipping. Prevention of CRG casualties is an important issue, especially because of the number of CRG casualties has increased almost twice during recent years. For the great majority of all CRG casualties human factor responsible, and the increasing number of these casualties might be attributed to poorer qualifications of ship masters who have not enough experience in handling very large ships put into operation presently. Risk analysis is a modern method for assessment of safety level of technical systems. This tool may be the used to investigate causes of casualties and to find out most effective prevention measures. Risk analysis is widely used in many areas; in case of marine technology it is used routinely in off-shore technology. The author investigates possibilities to apply risk analysis in the area of ship handling with the focus on human factor. This is preliminary study where possible methodology for hazards identification and risk assessment in respect of CRG casualties are investigated and risk control options are suggested. Various aspects of the influence of human factor in collision avoidance are listed and in particular the effect of training is stressed.
11
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
The security of maritime traffic is a significant part of intelligent maritime traffic. It can reduce to ship maneuvering and collision avoidance by macroscopic. Eighty percents of marine accident induce by human factor from research data. So some researches about intelligent computer evaluation system to reduce the accident of human caused have emerged. Intelligent evaluation system of ship maneuvering can calculate the status of ship and getting the data of ship around, and then adopt fuzzy comprehensive evaluation method to calculate the collision risk and evaluate the operation of navigator. If it has danger of collision risk or the navigator adopts irrational operation scheme by calculating, the system will send message to the navigator. The navigator must affirm the messages, if there is not affirmance, the system will adopt collision avoidance measures or other rational operations automatically at the critical moment.
Flexible strategies for collision avoidance, presented at TransNav 2007, were examined using computer program for its correctness in different situations of ships interaction. It was determined, that on short distance the risk of collision can arise again when the vessel returning to the planned route after deviation from collision. For controlling ship’s safe returning, the mathematical model was developed. This model describes the analytical dependence of the rate of changing relative course with respect to rates of turning of the vessels and its initial relative position. This method can be used in automatic systems for controlling the safe returning of the vessel to the planned route.
Maritime traffic situations is regulated in the Convention on the International Regulations for Preventing Collisions at Sea (COLREGs), but how well are these rules followed by officers on board vessels? When the world shipping fleet grow and the traffic becomes more intensive, the risk of collision increase. By analysing AIS data from vessels in the traffic separation scheme Bornholmsgat during 24 hours in December 2013, 421 traffic situations were found where the passing distance between the vessels were less than 1.5 nautical miles. The compliance with the Convention on the International Regulations for Preventing Collisions at Sea (COLREGs) seems to be good, but the average avoiding action is less than the recommended manoeuver.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.