Euler summability method in a complete, non-trivially valued, ultrametric field of the characteristic zero was introduced by Natarajan in [7]. Some properties of the Euler summability method in such fields were studied in [2] and [7]. The purpose of the present note is to continue the study and to prove a pair of theorems on the Cauchy product of Euler summable sequences and series.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Throughout the present paper, entries of sequences, infinite series and infinite matrices are real or complex numbers. The class (ℓα, ℓα), 0 < α ⩽ 1, of all infinite matrices transforming sequences in ℓα to sequences in ℓα is characterized. The structure of (ℓα, ℓα), 0 < α ⩽ 1, is then discussed. Following Fridy [Properties of absolute summability matrices, Proc. Amer. Math. Soc. 24 (1970), 583-585], a Steinhaus type result involving the class (ℓα, ℓα) is also proved.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.