An efficient method for simulating laminar flows in complex geometries is presented. The artificial compressibility method was applied to solve two- and three-dimensional Navier-Stokes equations in primitive variables on Cartesian grids. Two numerical approaches were proposed in this work, which are based on the method of lines process in conjunction with transfer of all the variables from the boundaries to the nearest uniform grid knots. Initial value problems for the systems of ordinary differential equations for pressure and velocity components were computed using the one-step backward-differentiation predictor-corrector method or the Galerkin-Runge-Kutta method of third order. Some test calculations for laminar flows in square, half-square, triangular, semicircular, cubic, half-cubic, half-cylinder and hemisphere cavities with one uniform moving wall were reported. The present results were compared with the available data in the literature and the Fluent solver numerical simulations.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.