We present constructions of countable two-dimensional subshifts of finite type (SFTs) with interesting properties. Our main focus is on properties of the topological derivatives and subpattern posets of these objects. We present a countable SFT whose iterated derivatives are maximally complex from the computational point of view, constructions of countable SFTs with high Cantor-Bendixson ranks, a countable SFT whose subpattern poset contains an infinite descending chain and a countable SFT whose subpattern poset contains all finite posets. When possible, we make these constructions deterministic, and ensure the sets of rows are very simple as one-dimensional subshifts.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.