Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  CPL function
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Jeden z rodzajów eksploracji danych – klasyfikacja – może zostać użyty do prognozowania zmian cen na giełdzie. W najprostszym scenariuszu możemy klasyfikować dane giełdowe do jednej z dwóch klas: wzrostów bądź spadków. W standardowym podejściu przy budowie klasyfikatora maksymalizowana jest ilość prawidłowo sklasyfikowanych obiektów, jednak dla danych giełdowych lepszym wyznacznikiem jakości modelu może być osiągnięty zysk. W artykule tym opisano klasyfikator liniowy oparty o wypukłe i odcinkowo-liniowe funkcje kary (CPL) maksymalizujący wartość zysku.
XX
One kind of data mining – classification – can be used for purpose of predicting changes in market prices. In the simplest scenario we can classify every daily market move as one of two classes: increases or decreases. The standard approach to building a classifier is to optimize correctly classified instances (market moves). However, in the case of predicting the stock market, a better measure of model quality could be a potential profit. This article describes such an approach (cost-sensitive classification) for a linear classifier based on a convex and piecewise-linear penalty function (CPL).
EN
Regression models of censored survival data are often required to handle the cases, where information on the dependent (response) variable is only available as intervals, within which the actual values are located. We report on implementation and some preliminary tests of a new general method for regression with an interval-censored response variable. This method is based on minimization of a convex piecewise-linear (CPL) criterion function introduced earlier for perceptron-type classifier design. The presented interval regression method (CPL- IR) can handle arbitrary pattern of exact and left-, right-, or interval-censored data in one flexible computational framework.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.