Dynamic reservoir modeling is one of the principal tools in technical performance evaluation of a CO2 storage project. It allows the evaluation of effective capacity (sweep efficiency), injectivity, the plume footprint, as well as the construction of injection scenarios, supports the construction of the monitoring programs and describes possible long-term disposition of stored CO2. The quality of containment under dynamic conditions can also be assessed within the model, by evaluating whether the pressure evolution at the caprock are lower than the capillary entry pressure or fracturing pressure. The dynamic model incorporates the definition of reservoir boundaries (including the aquifer volumes attached), the fluid and reservoir properties are defined, the pressure and temperature observed, the fluid saturations, as well as the relative permeability in order to have a good representation of the initial and dynamic reservoir conditions. Dynamic simulations with ECLIPSE software, which is a commercial tool used very extensively in the oil and gas industry, are presented here. Over the past few years, specific compositional code features have been developed and tested to model the CO2 storage in saline aquifers as well as in depleted oil and gas reservoirs. This specific code computes physical properties of pure and impure CO2 at various pressures and temperatures. It also represents mutual solubility between CO2 and water, namely the dissolution of CO2 into the water and the vaporization of water into the CO2 rich phase, adjusting viscosity and density of the fluids accordingly. One of the options also allows the representation of drying out of the formation and salt precipitation triggered by saturated concentrations developing within the remaining brine in the near wellbore area. Thermal effects of injecting fluids of one temperature into a reservoir of different temperature can be obtained. These functionalities allow simulations to provide a good representation of dynamic reservoir behavior in various CO2 storage cases. A set of synthetic model cases have been constructed to provide examples of reservoir simulations of a CO2 storage project. The result of these simulations illustrate some of the specific phenomenon that might occur in CO2 injection, such as mutual solubility, salt precipitation, change in pH, gravity effect, as well as the temperature front propagation due to a cold injection stream. The contribution of each trapping mechanism is also described in one of the examples.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
W publikacji zaprezentowano metodykę,która pozwoliła wyodrębnić strefy o korzystnych własnościach petrofizycznych umiejscowionych w stropowej partii kompleksu węglanowego górnej jury i dolnej kredy z obszaru środkowej części przedgórza Karpat. W przeprowadzonych badaniach wykorzystano zdjęcie sejsmiczne 3D oraz dane z otworów wiertniczych. Wyodrębnienie obiektów przestrzennych do potencjalnej sekwestracji CO2 było realizowane na podstawie atrybutów sejsmicznych obliczonych z inwersji symultanicznej. Inwersja sejsmiczna jest cennym narzędziem umożliwiającym estymację parametrów fizycznych ośrodka geologicznego z danych sejsmicznych, gdyż pozwala ona na przekształcenie amplitudy refleksów sejsmicznych w fizyczne parametry skał, a w konsekwencji w ilościowy opis złoża. Prędkość propagacji fal sejsmicznych jest jednym z podstawowych parametrów, który najbardziej wiarygodnie charakteryzuje właściwości fizyczne ośrodka geologicznego. Wykonane zostały wykresy krzyżowe impedancji fali podłużnej względem Lambda--Rho (Zp – λρ) oraz Lambda-Rho względem Mu-Rho (λρ – μρ), które w najlepszym stopniu odzwierciedlały zależności pomiędzy parametrami sprężystymi i elastycznymi. Opracowana metodyka może znaleźć zastosowanie zarówno do rozpoznawania stref o korzystniejszych parametrach zbiornikowych, jak również do bardziej zaawansowanych procesów budowy modeli statycznych i dynamicznych analizowanych formacji skalnych.
EN
The paper presents a methodology for distinguishing zones with better petrophysical properties in the uppermost part of the Upper Jurassic and Lower Cretaceous carbonate complex from the Carpathian Foreland area. For these studies 3D seismic survey and well data were used. Identification of spatial objects for potential CO2 sequestration was realized on the basis of seismic attributes calculated from simultaneous inversion. Seismic inversion is a useful tool for the estimation of reservoir properties from seismic data, as it enables the transformation of the amplitude of seismic reflections into physical parameters of rocks and, consequently, into a quantitative description of the reservoir. Propagation of velocity seismic waves is one of the basic parameters that most reliably characterizes the physical properties of a geological formation. Cross plots of longitudinal wave impedance versus Lambda-Rho (Zp – λρ) and Lambda-Rho versus Mu-Rho (λρ – μρ) were made, which best represented the relationships of the elastic parameters. Developed methodology can be applied both for identifying zones with more favorable reservoir parameters, as well as for more advanced processes of construction of static and dynamic models of the analyzed rock formations.
W artykule przedstawiono ocenę możliwości lokalizacji składowisk CO2 w poziomach solankowych regionu Górnośląskiego Zagłębia Węglowego. Na podstawie analizy budowy geologicznej oraz oceny parametrów zbiornikowych, jako potencjalne składowiska wyznaczono trzy poziomy solankowe: dwa w utworach karbonu węglonośnego – w górnośląskiej serii piaskowcowej i krakowskiej serii piaskowcowej oraz jeden w utworach miocenu – w warstwach dębowieckich. Z tych trzech jednostek, najkorzystniejszymi parametrami geologicznymi i hydrogeologicznymi dla składowania CO2 charakteryzują się warstwy dębowieckie. Największy potencjał ma obszar położony na zachód od Bielska-Białej pomiędzy Cieszynem i Czechowicami-Dziedzicami. Obliczone pojemności składowania dla warstw dębowieckich w tym rejonie szacowane są na 40–60 Mt. Utrudnieniem dla składowania CO2 jest fakt, że teren ten w znacznej części pokryty jest obszarami Natura 2000 i parkami krajobrazowymi.
EN
This article presents a study of possible locations for CO2 storage reservoirs in the brine aquifers in the Upper Silesian Coal Basin. Based on the analysis of the geological structure and hydrogeological characteristics three brine aquifers have been designated for possible CO2 storage: two in the Carboniferous deposits – in the Upper Silesian Sandstone Series and Cracow Sandstone Series – and one in the Miocene deposits of the Dębowiec Beds. Among these three series the most adequate conditions for potential CO2 storage are present in the Dębowiec Beds. The most promising area is located to the west of Bielsko-Biała between Cieszyn and Czechowice-Dziedzice. Capacity for CO2 storage in this region is estimated at 40–60 Mt. Because a considerable part of the area is covered by the Nature 2000 protection and landscape parks, some problems may arise for the CO2 storage plans.
The principle of Enhanced Geothermal System (EGS) technology is that water injected at a sufficiently high pressure will lead to the fracturing of naturally impermeable rocks, and as a result, this will create hydraulic communication between wells. In this way, reservoirs not previously considered to be perspective can provide geothermal heat to the surface. Since nearly two decades, CO2 is considered, mostly theoretically, as a working fluid that can potentially provide higher net power output than water in EGS’s installation. In this respect, the possibility of accessing high-temperature heat from the Are and Tilje formations located on the shelf of the Norwegian Sea was analysed. The estimated temperature at the reservoir depth of 4,500–5,000 m is not less than 165°C. For this, a 3D numerical modelling was performed in order to analyse 10 different scenarios for heat extraction using supercritical CO2 (sCo2) as a working fluid. Results indicate that appropriate matching of the mass flow and temperature of the injected CO2 allows to avoid premature temperature decline in the reservoir. However, as Are and Tilje formations are built from highly porous and relatively highly permeable rocks, the fluid entering the production well will always be a mixture of CO2 and water. This is advantageous from the point of view that a significant part of the injected CO2 is trapped in the reservoir, while the higher water content in the production well allows a significant temperature drop during fluid extraction to the surface to be avoided.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.