Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 6

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  C*-algebra
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Sphere and projective space of a C*-algebra with a faithful state
100%
EN
Let A be a unital C*-algebra with a faithful state φ. We study the geometry of the unit sphere Sφ = {x∈A : φ(x*x) = 1} and the projective space Pφ = Sφ/T. These spaces are shown to be smooth manifolds and homogeneous spaces of the group Uφ(A) of isomorphisms acting in A which preserve the inner product induced by φ, which is a smooth Banach-Lie group. An important role is played by the theory of operators in Banach spaces with two norms, as developed by M.G. Krein and P. Lax. We define a metric in Pφ, and prove the existence of minimal geodesics, both with given initial data, and given endpoints.
2
Content available remote A characterization of completely bounded multipliers of Fourier algebras
94%
|
|
nr 2
311-313
3
Content available remote Range projections of idempotents in C*-algebras
94%
|
2001
|
tom Vol. 34, nr 1
91-103
EN
In this paper we study range projections of idempotents m C*-algebras, and use them to obtain a Schur type decomposition that leads to simple proofs of results on Moore-Penrose inverse and norms of idempotents. We analyze the continuity of range projections, obtain a general result on their approximation, and recover a result of Vidav on two projections in a Hilbert space. Several representations of range projections are given.
4
Content available remote Elements of C*-algebras commuting with their Moore-Penrose inverse
94%
EN
We give new necessary and sufficient conditions for an element of a C*-algebra to commute with its Moore-Penrose inverse. We then study conditions which ensure that this property is preserved under multiplication. As a special case of our results we recover a recent theorem of Hartwig and Katz on EP matrices.
EN
We point out a relation between the Arveson's Radon-Nikodym derivative and known similarity results for completely bounded maps. We also consider Jordan type decompositions coming out from Wittstock's Decomposition Theorem and illustrate, by an example, the nonuniqueness of these decompositions.
6
Content available remote Operators preserving ideals in C*-algebras
94%
|
|
nr 1
67-72
EN
The aim of this paper is to prove that derivations of a C*-algebra A can be characterized in the space of all linear continuous operators T : A → A by the conditions T(1) = 0, T(L∩R) ⊂ L + R for any closed left ideal L and right ideal R. As a corollary we get an extension of the result of Kadison [5] on local derivations in W*-algebras. Stronger results of this kind are proved under some additional conditions on the cohomologies of A.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.