In this paper we consider the truncated shift operator Su on the model space K2u := H2 θ uH2. We say that a complex number λ is an extended eigenvalue of Su if there exists a nonzero operator X, called extended eigenvector associated to λ, and satisfying the equation SuX = λXSu. We give a complete description of the set of extended eigenvectors of Su, in the case of u is a Blaschke product..
3
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
We give necessary and sufficient conditions for Blaschke products with zeros on an a-curve, to belong to a Qp space, in terms only of distribution of the zeros. It comes out that the condition depends on p. As we see the 0-1 law of the non tangential case breaks. Here it is possible that a Blaschke product B belongs to Qp for some but not for all p.
4
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
For a Blaschke product B with zeros in an angular domain having vertex on the unit circle we give a necessary and sufficient condition for the boundary behavior of B, in terms only of the distribution of the zeros. Moreover, we show, with a counterexample, the non-equivalence of two known results of Tanaka, concerning the specific boundary behavior of Blaschke products.
6
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This paper gives a full characterization of the reducing subspaces for the multiplication operator Mϕ on the Dirichlet space with symbol of finite Blaschke product ϕ of order 5I 6I 7. The reducing subspaces of Mϕ on the Dirichlet space and Bergman space are related. Our strategy is to use local inverses and Riemann surfaces to study the reducing subspaces of Mϕ on the Bergman space. By this means, we determine the reducing subspaces of Mϕ on the Dirichlet space and answer some questions of Douglas-Putinar-Wang in [6].
7
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let X be a convex domain in ℂⁿ and let E be a convex subset of X. The relative extremal function $u_{E,X}$ for E in X is the supremum of the class of plurisubharmonic functions v ≤ 0 on X with v ≤ -1 on E. We show that if E is either open or compact, then the sublevel sets of $u_{E,X}$ are convex. The proof uses the theory of envelopes of disc functionals and a new result on Blaschke products.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.