Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Besov spaces
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Characterizations of some function spaces in terms of Haar wavelets
100%
|
|
tom Vol. 53, No. 2
35--53
EN
Some spaces Asp,q(Rn) with A = {B, F}, s ϵ R, 0 < p, q ≤ ∞, covering Besov spaces, Hölder-Zygmund spaces and Sobolev spaces, admit characterizations in terms of Haar bases. It is the main aim of this paper to extend this observation to corresponding Morreyfied spaces Lr Asp,q(Rn). As a by-product we obtain Littlewood-Paley theorems for (homogeneous and inhomogeneous) Morrey spaces Lrp(Rn), Lrp(Rn) and, in particular, L°rp(Rn).
2
Content available remote Intrinsic characterizations of distribution spaces on domains
75%
|
|
nr 3
277-298
EN
We give characterizations of Besov and Triebel-Lizorkin spaces $B_{pq}^{s}(Ω)$ and $F_{pq}^s(Ω)$ in smooth domains $Ω ⊂ ℝ^n$ via convolutions with compactly supported smooth kernels satisfying some moment conditions. The results for s ∈ ℝ, 0 < p,q ≤ ∞ are stated in terms of the mixed norm of a certain maximal function of a distribution. For s ∈ ℝ, 1 ≤ p ≤ ∞, 0 < q ≤ ∞ characterizations without use of maximal functions are also obtained.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.