Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  BMO
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote A variant sharp estimate for multilinear singular integral operators
100%
EN
We establish a variant sharp estimate for multilinear singular integral operators. As applications, we obtain the weighted norm inequalities on general weights and certain $Llog^{+}L$ type estimates for these multilinear operators.
2
Content available remote Partial retractions for weighted Hardy spaces
100%
EN
Let 1 ≤ p ≤ ∞ and let $w_0, w_1$ be two weights on the unit circle such that $log(w_0w_1^{-1})∈ BMO$. We prove that the couple $(H_p(w_0), H_p(w_1))$ of weighted Hardy spaces is a partial retract of $(L_p(w_0), L_p(w_1))$. This completes previous work of the authors. More generally, we have a similar result for finite families of weighted Hardy spaces. We include some applications to interpolation.
3
Content available remote Weighted inequalities for some integral operators with rough kernels
100%
EN
In this paper we study integral operators with kernels $$K(x,y) = k_1 (x - A_1 y) \cdots k_m \left( {x - A_m y} \right),$$ $$k_i \left( x \right) = {{\Omega _i \left( x \right)} \mathord{\left/ {\vphantom {{\Omega _i \left( x \right)} {\left| x \right|}}} \right. \kern-\nulldelimiterspace} {\left| x \right|}}^{{n \mathord{\left/ {\vphantom {n {q_i }}} \right. \kern-\nulldelimiterspace} {q_i }}}$$ where Ωi: ℝn → ℝ are homogeneous functions of degree zero, satisfying a size and a Dini condition, A i are certain invertible matrices, and n/q 1 +…+n/q m = n−α, 0 ≤ α < n. We obtain the appropriate weighted L p-L q estimate, the weighted BMO and weak type estimates for certain weights in A(p, q). We also give a Coifman type estimate for these operators.
4
100%
Open Mathematics
|
2016
|
tom 14
|
nr 1
1023-1038
EN
In this paper, we study the boundedness of fractional multilinear integral operators with rough kernels [...] TΩ,αA1,A2,…,Ak, $T_{\Omega ,\alpha }^{{A_1},{A_2}, \ldots ,{A_k}},$ which is a generalization of the higher-order commutator of the rough fractional integral on the generalized weighted Morrey spaces Mp,ϕ (w). We find the sufficient conditions on the pair (ϕ1, ϕ2) with w ∈ Ap,q which ensures the boundedness of the operators [...] TΩ,αA1,A2,…,Ak, $T_{\Omega ,\alpha }^{{A_1},{A_2}, \ldots ,{A_k}},$ from [...] Mp,φ1wptoMp,φ2wq ${M_{p,{\varphi _1}}}\left( {{w^p}} \right)\,{\rm{to}}\,{M_{p,{\varphi _2}}}\left( {{w^q}} \right)$ for 1 < p < q < ∞. In all cases the conditions for the boundedness of the operator [...] TΩ,αA1,A2,…,Ak, $T_{\Omega ,\alpha }^{{A_1},{A_2}, \ldots ,{A_k}},$ are given in terms of Zygmund-type integral inequalities on (ϕ1, ϕ2) and w, which do not assume any assumption on monotonicity of ϕ1 (x,r), ϕ2(x, r) in r.
5
89%
EN
In this paper, we will discuss the space of functions of weak bounded mean oscillation. In particular, we will show that this space is the dual space of the special atom space, whose dual space was already known to be the space of derivative of functions (in the sense of distribution) belonging to the Zygmund class of functions. We show, in particular, that this proves that the Hardy space H1 strictly contains the special atom space.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.