In this paper we define an algebra of type (2,2,0) associated with posets called a poring and we study several properties of porings and the linear algebras having such porings as their bases. In particular, we show that if (P; *, .) is a standard poring then the distributive law (x . y) * z = (x * z) . (y * z) holds iff the poset P (or the poset X) is (C2 +1)-free.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.