The impact of water stress was analysed in the xero-halophyte Mediterranean shrub Atriplex halimus using two Tunisian populations originating from a subhumid coastal site (Monastir) or from a semi-arid area (Kairouan). Seedlings were exposed for 10 days to nutrient solution containing either 0 or 15% polyethylene glycol. Water potential (Ψw), osmotic potential (Ψs), osmotic potential at full turgor [Ψs(100)], relative water content (RWC), shoot dry weight (DW) and changes in solute concentrations were quantified every 2 days throughout the stress period and inorganic solutes contents were determined at the end of the treatment. The water deficit induced a decrease in Ψw, Ψs and RWC in both populations, recorded changes being higher in plants of Monastir than those of Kairouan while the shoot dry weight was reduced in a similar extent in stressed plants from both populations. Water deficit induced an increase in proline, glycinebetaine and sugar concentrations. Proline accumulated as early as after the 24-h stress treatment while, glycinebetaine required more than 6 days of stress to accumulate. At the end of the stress period, the plants of Kairouan population accumulated higher amounts of proline than those of Monastir, while an opposite trend was reported for glycinebetaine. Both populations specifically accumulated Na⁺ in response to drought stress, suggesting that this element could play a physiological role in the stress response of this xero-halophyte species. Presented results suggest that the non-recyclable osmotic solute glycinebetaine does not necessarily preferentially accumulates in population facing permanent water stress and that other strategy than osmotic adjustment might be involved in drought tolerance of A. halimus.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.