Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 16

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Analiza danych funkcjonalnych
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The relationship between two sets of real variables defined for the same individuals can be evaluated by a few different correlation coefficients. For the functional data we have one important tool: canonical correlations. It is not immediately straightforward to extend other similar measures to the context of functional data analysis. In this work we show how to use the distance correlation coefficient for a multi-variate functional case. The approaches discussed are illustrated with an application to some socio-economic data. (original abstract)
2
100%
|
2023
|
tom 27
|
nr nr 3
20-34
XX
Głównym celem artykułu była analiza danych funkcjonalnych dotyczących liczby pozytywnych wyników testu, zgonów, ozdrowieńców, osób hospitalizowanych oraz w stanie ciężkim podczas drugiej fali pandemii COVID-19 w Polsce. Pierwszym krokiem była konwersja danych w funkcje gładkie. Następnie przedstawiono analizę głównych składowych funkcjonalnych oraz użycie modelu multiple function-on-function linear regression w celu predykcji liczby osób hospitalizowanych oraz będących w stanie ciężkim z powodu COVID-19 w polskich województwach. Otrzymane wyniki porównano z wcześniej uzyskanymi dla połączonych danych z drugiej i trzeciej fali pandemii.(abstrakt oryginalny)
EN
The aim of this article was to analyse functional data of the number of hospitalised individuals, intensive care patients, positive COVID-19 tests, deaths and convalescents during the second wave of the COVID-19 pandemic in Poland. For this purpose, firstly the author convert data of sixteen voivodeships to smooth functions, and then used the principal component analysis and multiple function-on-function linear regression model to predict the number of hospitalised and intensive care patients due to the COVID-19 infection during the second wave of the pandemic. Finally, the results were compared with those previously obtained for the combined data of the second and third wave of the COVID-19 pandemic in Poland (Hęćka, 2023).(original abstract)
3
100%
|
2023
|
tom 27
|
nr nr 3
1-19
XX
Głównym celem przedstawionych w artykule badań jest oszacowanie kwantyla rozkładu warunkowego przy użyciu podejścia półparametrycznego w obecności losowo brakujących danych, gdzie zmienna predykcyjna należy do przestrzeni semimetrycznej. Założono strukturę pojedynczego indeksu, aby połączyć zmienną objaśniającą i zmienną odpowiedzi. Wstępnie zaproponowano estymator jądra dla funkcji rozkładu warunkowego, zakładając, że dane są losowo wybierane z procesu stacjonarnego z brakującymi danymi (MAR). Nakładając pewne ogólne warunki, ustalono jednolitą, prawie całkowitą zgodność modelu ze współczynnikami konwergencji.(abstrakt oryginalny)
EN
The primary goal of this research was to estimate the quantile of a conditional distribution using a semi-parametric approach in the presence of randomly missing data, where the predictor variable belongs to a semi-metric space. The authors assumed a single index structure to link the explanatory and response variable. First, a kernel estimator was proposed for the conditional distribution function, assuming that the data were selected from a stationary process with missing data at random (MAR). By imposing certain general conditions, the study established the model's uniform almost complete consistencies with convergence rates.(original abstract)
4
Content available remote Comparison of the Beef Prices in Selected Countries of the European Union
75%
EN
Functional data analysis is used to examine beef price differences in selected countries of the European Union from 2006 to 2011. The prices are modeled as functional observations. The analysis is conducted in three steps relating to three kinds of functional data analysis. First the observations are smoothed with roughness penalty. Then functional principal analysis is applied. Finally functional analysis of variance is used to reveal significant difference between two given groups of countries. (original abstract)
EN
Significant demographic phenomena can be observed in Poland - the number of school age population is decreasing. It affects higher education since the immediate effect of demographic changes is the drop in the number of students. The analysis of the level of future students' knowledge also remains an important aspect of the problem. The purpose of the article is to compare the level of knowledge presented by students at the subsequent stages of education in the period 2009-2015. The research covers the average exam results received on graduation from the second, third and fourth stage of education. Functional principal component analysis, which is based on functional data, will be applied in the study. This method allows an analysis of dynamic data. (original abstract)
6
Content available remote Kernel Functional Canonical Correlation Analysis
75%
XX
W ostatnich latach wiele uwagi poświęca się analizie korelacji kanonicznych dla danych reprezentowanych przez funkcje lub krzywe. Takie dane są nazywane w literaturze danymi funkcjonalnymi (Ramsay i Silverman, 2005) i są obszarem wielu zainteresowań badawczych. Przykłady danych funkcjonalnych można znaleźć w wielu praktycznych zastosowaniach, takich jak medycyna, ekonomia, meteorologia i wiele innych. Niestety wielowymiarowe metody korelacji kanonicznych nie mogą być bezpośrednio zastosowane do danych funkcjonalnych, z uwagi na wymiar i trudności związane z uwzględnieniem korelacji i kolejności danych funkcjonalnych. Problem konstrukcji korelacji i zmiennych kanonicznych dla danych funkcjonalnych został zapoczątkowany przez Leurgansa i in. (1993), a następnie rozwinięty przez Ramsaya i Silvermana (2005). W tym artykule proponujemy nową metodę konstrukcji korelacji i zmiennych kanonicznych dla danych funkcjonalnych. (abstrakt oryginalny)
EN
Canonical correlation methods for data representing functions or curves have received much attention in recent years. Such data, known in the literature as functional data (Ramsay and Silverman, 2005), has been the subject of much recent research interest. Examples of functional data can be found in several application domains, such as medicine, economics, meteorology and many others. Unfortunately, the multivariate data canonical correlation methods cannot be used directly for functional data, because of the problem of dimensionality and difficulty in taking into account the correlation and order of functional data. The problem of constructing canonical correlations and canonical variables for functional data was addressed by Leurgans et al. (1993), and further developments were made by Ramsay and Silverman (2005). In this paper we propose a new method of constructing canonical correlations and canonical variables for functional data. (original abstract)
EN
This paper is inspired by medical studies in which the same patients with multiple sclerosis are examined at several successive visits (doctor's appointments) and described by fractional anisotropy tract profiles, which can be represented as f unctions. Since the observations for each patient are dependent random processes, they follow a repeated measures design for functional data. To compare the results for different visits, we thus consider functional repeated measures analysis of variance. For this purpose, a pointwise test statistic is constructed by adapting the classical test statistic for one-way repeated measures analysis of variance to the functional data framework. By integrating and taking the supremum of the pointwise test statistic, we create two global test statistics. In addition to verifying the general null hypothesis of the equality of mean functions corresponding to different objects, we also propose a simple method for post hoc analysis. We illustrate the finite sample properties of permutation and bootstrap testing procedures in an extensive simulation study. Finally, we analyze a real data example in detail. All methods are implemented in the R package rmfanova, available on CRAN. (original abstract)
EN
In economics we often face a system which intrinsically imposes a structure of hierarchy of its components, i.e., in modeling trade accounts related to foreign exchange or in optimization of regional air protection policy. A problem of reconciliation of forecasts obtained on different levels of hierarchy has been addressed in the statistical and econometric literature many times and concerns bringing together forecasts obtained independently at different levels of hierarchy. This paper deals with this issue with regard to a hierarchical functional time series. We present and critically discuss a state of art and indicate opportunities of an application of these methods to a certain environment protection problem. We critically compare the best predictor known from the literature with our own original proposal. Within the paper we study a macromodel describing the day and night air pollution in Silesia region divided into five subregions. (original abstract)
XX
W artykule opisano nowy estymator funkcji rozkładu warunkowego (CDF) używany, gdy współzmienne mają charakter funkcjonalny. Ten estymator jest połączeniem obu procedur: k-najbliższego sąsiada i przestrzennej estymacji funkcjonalnej.(abstrakt oryginalny)
EN
In this paper the author introduced a new conditional distribution function estimator, in short (cdf), when the co-variables are functional in nature. This estimator is a mix of both procedures the k Nearest Neighbour method and the spatial functional estimation.(original abstract)
|
|
nr z. 2
20-45
EN
In this work, we consider the problem of non-parametric estimation of a regression function, namely the conditional density and the conditional mode in a single functional index model (SFIM) with randomly missing data. The main result of this work is the establishment of the asymptotic properties of the estimator, such as almost complete convergence rates. Moreover, the asymptotic normality of the constructs is obtained under certain mild conditions. We finally discuss how to apply our result to construct confidence intervals.(original abstract)
XX
Artykuł prezentuje koncepcję uniwersalnej metody parametryzacji dowolnej sieci transportowej posiadającej dane opisujące jej funkcjonalności w zakresie zasobów zgromadzonych na serwerach OSM. Wystarczy w tym celu zdefiniować wskaźnik opisujący sieć na bazie kilku wybranych jej elementów, aby na drodze pobrania danych z zasobów OSM szybko i precyzyjnie obliczyć jego wartość. Problemem nie jest indeksacja dowolnej sieci, ale głównie odpowiednie zasilenie w dane map Osm w przypadku wystąpienia jakikolwiek braków w tym zakresie.(abstrakt oryginalny)
EN
The article presents the concept of a universal method of parameterization of any transport network that owns the data describing the functionality in terms of resources collected on the OSM servers. It suffices to define the indicator describing the network on the basis of a few selected elements of it on the road to retrieve data from OSM resources quickly and accurately calculate its value. The problem is not indexing any network, but mostly adequate supply of the map data OSM in case of any lacks in this regard.(original abstract)
XX
W artykule przeprowadzono krytyczną analizę najbardziej znanych klasyfikatorów dla danych funkcjonalnych. Ponadto zaproponowano nowy klasyfikator dla danych funkcjonalnych. Przedyskutowano pewne, związane z odpornością, własności rozważanych klasyfikatorów. Wypracowane w artykule podejście może zostać użyte do przewidywania stanu gospodarki na podstawie indeksu mierzącego optymizm konsumentów - CCI (Consumer Confidence Index) oraz indeksu odzwierciedlającego optymizm w sektorze przemysłowym - IPI (Industrial Price Index), przy czym wykorzystuje się nie tylko skalarne wartości indeksu, lecz także całą trajektorię/kształt funkcji opisującej dany indeks. W związku z tym nasze rozważania mogą być pomocne w skonstruowaniu lepszego barometru stanu gospodarki. O ile wiadomo autorom, jest to pierwsze porównanie klasyfikatorów dla danych funkcjonalnych ze względu na kryterium ich użyteczności aplikacyjnej w ekonomii. Głównym celem artykułu jest zaprezentowanie, jak mała frakcja obserwacji nietypowych w próbce uczącej, będących liniowo niezależnymi z próbką uczącą, która z kolei składa się z funkcji prawie liniowo zależnych, jest w stanie poważnie zaburzyć wyniki klasyfikacji dla wszystkich rozpatrywanych klasyfikatorów. (abstrakt oryginalny)
EN
In this paper we conduct a critical analysis of the most popular functional classifiers. Moreover, we propose a new classifier for functional data. Some robustness properties of the functional classifiers are discussed as well. We can use an approach worked out in this paper to predict the expected state of the economy from aggregated Consumer Confidence Index (CCI, measuring consumers optimism) and Industrial Price Index (IPI, reflecting a degree of optimism in industry sector) exploiting not only scalar values of the indices but also the trajectories/shapes of functions describing the indices. Thus our considerations may be helpful in constructing a better economic barometer. As far as we know, this is the first comparison of functional classifiers with respect to a criterion of their usefulness in economic applications. The main result of the paper is a presentation of how a small fraction of outliers in a training sample, which are linearly independent from the training sample, consisting of almost linearly dependent functions, corrupt all analysed classifiers. (original abstract)
EN
A new variable selection method is considered in the setting of classification with multivariate functional data (Ramsay and Silverman (2005)). The variable selection is a dimensionality reduction method which leads to replace the whole vector process, with a low-dimensional vector still giving a comparable classification error. Various classifiers appropriate for functional data are used. The proposed variable selection method is based on functional distance covariance (dCov) given by Székely and Rizzo (2009, 2012) and the Hilbert-Schmidt Independent Criterion (HSIC) given by Gretton et al. (2005). This method is a modification of the procedure given by Kong et al. (2015). The proposed methodology is illustrated with a real data example. (original abstract)
|
2019
|
tom 23
|
nr nr 4
16-29
XX
Analiza funkcjonalna wykorzystuje dane funkcjonalne, tzn. krzywe i trajektorie, czyli ciągi indywidualnych obserwacji, nie na pojedynczej obserwacji. Funkcjonalna analiza głównych składowych polega na przekształceniu funkcjonalnych zmiennych pierwotnych w zbiór nowych wzajemnie ortogonalnych zmiennych, nazywanych głównymi składowymi. Zastosowanie metody dla danych funkcjonalnych umożliwia analizę danych o charakterze dynamicznym. Celem artykułu jest wykorzystanie funkcjonalnej analizy głównych składowych do porównania poziomu wiedzy uczniów na kolejnych etapach edukacji w latach 2009-2017. Badaniem objęto średnie oceny otrzymane na egzaminach po zakończeniu II, III i IV etapu edukacji. W analizie wykorzystano funkcjonalną analizę głównych składowych, bazującą na danych funkcjonalnych. Metoda ta umożliwia analizę danych o charakterze dynamicznym.(abstrakt oryginalny)
EN
The functional principal components analysis joins the advantages of the principal components analysis and provide analysis of dynamic data. The main difference in both methods is the type of data the PCA is based on multivariate data, whereas the FPCA on the functional data including curves and trajectories, i.e. a series of individual observations, not a single observation, as usual. The functional principal components analysis with functional data, will be used in the analysis. This method allows the analysis of dynamic data. The purpose of the article is to apply of functional principal components analysis to the problem of student's achievements. The article was compared the level of students' knowledge during different stages of education in 2009-2017. The analysis covers the average exam results after the II, III and IV stage of education.(original abstract)
EN
We develop statistical methodology for the quantification of risk of source-destination pairs in an internet network. The methodology is developed within the framework of functional data analysis and copula modeling. It is summarized in the form of computational algorithms that use bidirectional source-destination packet counts as input. The usefulness of our approach is evaluated by an application to real internet traffic flows and via a simulation study. (original abstract)
|
|
tom 21
|
nr nr 3
21-37
EN
This paper considers new measures of mutual dependence between multiple multivariate random processes representing multidimensional functional data. In the case of two processes, the extension of functional distance correlation is used by selecting appropriate weight function in the weighted distance between characteristic functions of joint and marginal distributions. For multiple random processes, two measures are sums of squared measures for pairwise dependence. The dependence measures are zero if and only if the random processes are mutually independent. This property is used to construct permutation tests for mutual independence of random processes. The finite sample properties of these tests are investigated in simulation studies. The use of the tests and the results of simulation studies are illustrated with an example based on real data. (original abstract)
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.