Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 3

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  Al3Ti phase
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Multilayered composites based on light metals are promising materials in many applications. In the present work the 15-layered clad, composed of alternately stacked of Ti(Gr.1) and AA1050-H24 alloy sheets of 1 mm thick has been investigated with respect to determination of the kinetic of the Al3Ti phase growth. The defect-free multilayered composite was successfully formed by explosive welding technology. Then EXW samples were modified via annealing at the temperature of 600°C in closed die under pressure of 44 MPa for various times ranged between 1 and 10 h. Transmission and Scanning Electron Microscopy examinations were conducted in order to study the kinetic of the elements migration across the interfaces between the layers of the Al/Ti composite. The macro-scale observations of samples after EXW revealed that wavy interfaces were always formed in layers near the explosive charge. The increase of the distance from the top surface leads to flattening of the interface with very thin reaction layer between Al and Ti sheets. During annealing the kinetic of the Al3Ti phase growth is similar near all interfaces and coincides with data from other works. It was found that despite the loading after 10 h of annealing still only small part of Al-sheets undergoes dissolution and the width of the reaction layer does not exceed 5-8 μm.
EN
The processes of rolling and annealing of explosively welded multi-layered plates significantly affect the functional properties of the composite. In current research, fifteen-layered composite plates were fabricated using a single-shot explosive welding technique. The composites were then rolled up to 72% to reduce layer thickness, followed by annealing at 625 °C for varying times up to 100 h. Microstructure evolution and chemical composition changes were investigated using scanning electron microscopy equipped with energy-dispersive spectroscopy. The mechanical properties of the composite were evaluated by tensile testing, while the strengths of individual layers near the interface were evaluated by micro-hardness measurements. After explosive welding, the wavy interfaces were always formed between the top layers of the composite and the wave parameters decreasing as the bottom layers approach. Due to the rolling process, the thickness of Ti and Al layers decreases, and the waviness of top interfaces disappeared. Simultaneously, the necking and fracture of some Ti layers were observed. During annealing, the thickness of layers with chemical composition corresponding to the Al3Ti phase increased with annealing time. A study of growth kinetic shows that growth is controlled by chemical reaction and diffusion. The results of micro-hardness tests showed that after annealing, a fourfold increase of hardness can be observed in the reaction layers in relation to the Ti, while in relation to Al, the increase of hardness is even 15 times greater.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.