Purpose: of this paper is to deep and more complete knowledge about the features of phase and structure formation in Al-based alloys with transition metals (TM) Fe and V at rapid cooling from melt. It is known, that nonequilibrium synthesis conditions of such alloys lead to quasicrystalline, amorphous or metastable phases formation, which can significantly improve the physical-chemical properties and first of all the mechanical ones. But understanding of compositional dependences of structure features at formation under nonequilibrium conditions and the correlation of these dependences with physical properties of alloys is far to be clear. Design/methodology/approach: Structure of Al-enriched Al-V, Al-V-Fe rapid cooled alloys was studied by X-ray diffraction method. In order to estimate the influence of structural state of alloy on the mechanical properties the integral microhardness was studied by Vickers method. Findings: Two quasicrystalline icosaedral phases with different cell parameters are revealed in ternary alloys Al100-3xV2xFex (x=2-4). Increasing of transition metal content promotes the formation of phase with higher quasicell parameter embedded in amorphous matrix. With increasing of the transition elements total content from 6 up to 12 at. % the microhardness of alloys increased gradually from 867 to 3050 MPa. Research limitations/implications: Research of nonequilibrium alloys revealed crystalline structure of Al-V alloys and quasicrystalline embedded in amorphous matrix of Al-Fe-V ternary alloys. Obtained results suppose that further structure and physical properties studies of Al-Fe-V alloys will allows to find the conditions to control the producing of materials with desired properties. Practical implications: Using of rapid cooling method for synthesis of Al-enriched Al-Fe-V alloys give an opportunity to produce alloys with significantly improved mechanical properties. Originality/value: Nonequilibrium conditions of cooling allow significantly changes the structure and properties.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This study evaluated the structural changes of Al-Ni-(Fe,Cr,Cu)-Y alloys induced by different cooling states. The aim was to determine the role of Fe, Cr, and Cu addition as well as cooling rate on the structure, hardness and anticorrosion properties of crystalline and nanocrystalline Al-Ni-Y alloys. The impact of the preparation method on the structure of alloys was observed by the broadening of the X-ray diffraction peaks of the alloys in the form of plates, which indicated structure fragmentation at a high cooling rate. The TEM images showed the formation of a structure composed of homogeneously dispersed α-Al nanograins. Phase analysis performed using X-ray diffraction method and Mossbauer spectroscopy revealed that the slowly cooled master alloys were mainly composed of Al23Ni6Y4, Al10Fe2Y, and α-Al phases. The Al10Fe2Y structure was the main Fe-bearing phase in all investigated master alloys. A crystallization mechanism was proposed based on the DTA heating and cooling curves. The pitting corrosion type was identified based on morphology observations after electrochemical tests. Rapid solidification and the addition of chromium and copper improved the microhardness as well as corrosion resistance. The high increase of hardness (289 HV0.1) and corrosion resistance[...]
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.