Artykuł opisuje wykorzystanie sztucznej inteligencji w obliczeniach regresyjnych. Modele zbudowane w sposób tradycyjny oparte na klasycznych założeniach dostarczają możliwie precy-zyjnych informacji. Sam proces budowy modelu opiera się na wstępnym wyborze zmiennych wykorzystanych do jego tworzenia. Umiejętna selekcja zmiennych ma istotny wpływ na uzyskane parametry. Wykorzystując rozwiązanie przedstawione w tej pracy otrzymujemy model ze wstępnie dobranym optymalnym zbiorem treningowym. W kolejnych rozdziałach omówiono istotę analityki predykcyjnej, proces uczenia maszyno-wego, budowę drzewa decyzyjnego, pokazano przykład regresji wykorzystującego AdaBoost.
EN
This article describes the use of artificial intelligence in regression calculations. Models built in a traditional manner based on classical assumptions provide the most precise information possi-ble. The model building process itself is based on the initial selection of variables used to create it. Skillful selection of variables has a significant impact on the obtained parameters. Using the solu-tion presented in this work, we get a model with a pre-selected optimal training set. The following chapters discuss the essence of predictive analytics, the machine learning pro-cess, the construction of a decision tree, an example of regression using AdaBoost.
It has become crucial to have an early prediction model that provides accurate assurance for users about the financial situation of consumers. Recent studies have focused on predicting corporate bankruptcies and credit defaults, not personal bankruptcies. Due to this situation, the present study fills the literature gap by comparing different machine learning algorithms to predict personal bankruptcy. The main objective of the study is to examine the usefulness of machine learning models such as SVM, random forest, AdaBoost, XGBoost, LightGBM, and CatBoost in forecasting personal bankruptcy. The study relies on two samples of households (learning and testing) from the Survey of Consumer Finances, which was conducted in the United States. Among the models estimated, LightGBM, CatBoost, and XGBoost showed the highest effectiveness. The most important variables used in the models are income, refusal to grant credit, delays in the repayment of liabilities, the revolving debt ratio, and the housing debt ratio.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.