Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 9

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  ARIMA model
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
|
|
tom No. 1 (3)
70--77
EN
The primary products of the power industry are electric energy and thermal energy. Thus, forecasting electric energy consumption is significant for short and long term energy planning. ARIMA model has adopted to forecast energy consumption because of its precise prediction for energy consumption. Our result has shown that annual average electric energy consumption will be 10,628 million kWh per year during 2019-2030 which approximately 3.3 percent growth per annum. At the moment, there is not a practice solution for the storage of electricity in Mongolia. Therefore, energy supply and demand have to be balanced in real-time for operational stability. Without an accurate forecast, the end-users may experience brownouts or even blackouts or the industry could be faced with sudden accidents due to the energy demand. For this reason, energy consumption forecasting is essential to power system stability and reliability.
EN
Forecasts of economic processes can be determined using various methods, and each of them has its own characteristics and is based on specific assumptions. In the case of agriculture, forecasting is an essential element of efficient management of the entire farming process. The pork sector is one of the main agricultural sectors in the world. Pork consumption and supply are the highest among all types of meat, and Poland belongs to the group of large producers. The article analyses the price formation of class E pork, expressed in € per 100 kg of carcass, recorded from May 2004 to December 2019. The data comes from the Agri-food data portal. A creeping trend model with segments of linear trends of various lengths and the methodology of building ARIMA models are used to forecast these prices. The accuracy of forecasts is verified by forecasting ex post and ex ante errors, graphical analysis, and backcasting analysis. The study shows that both methods can be used in the prediction of pork prices.
EN
To take preventative measures to protect allergic people from the severity of the pollen season, one of aerobiology’s objectives is to develop statistical models enabling the short- and long-term prediction of atmospheric pollen concentrations. During recent years some attempts have been made to apply Time Series analysis, frequently used in biomedical studies and atmospheric contamination to pollen series. The aim of this study is to understand the behaviour of atmospheric alder pollen concentrations in northwest Spain in order to develop predictive models of pollen concentrations by using Time Series analysis. The prediction line proposed for Oviedo and Ponferrada are similar (Arima 2,0,1) while in Vigo a more accurate model founded by Arima (3,0,1) and in León (1,0,1) was used. The results suggest that Ponferrada and Oviedo are the cities in northwest Spain where Alnus pollen allergic individuals should to take preventive measures to protect themselves from the severity of the pollen season. Alnus pollen values higher than 30 grains/m3, a quantity considered sufficient to trigger severe allergy symptoms of other trees of the Betulaceae family, could be reached during 25 days in some years. The predicted lines conformed with the observed values overall in the case of León and Ponferrada. Time Series regression models are especially suitable in allergology for evaluating short-term effects of time-varying pollen appearance in the atmosphere.
5
63%
|
2018
|
tom nr 6
26--34
PL
Celem artykułu było opracowanie modelu prognozowania popytu na usługi transportowe operatora intermodalnego. Na podstawie udostępnionych danych, dotyczących liczby eksportowanych kontenerów, przedstawiono proces opisania zjawiska na podstawie jego przeszłych obserwacji, a także jego ewolucji w przyszłości. Zaproponowano dwa modele: regresji oraz ARIMA. Dla każdego z nich dokonano predykcji przyszłych obserwacji. Otrzymane wartości prognoz porównano i na tej podstawie wybrano model opisujący lepiej badane zjawisko, tzn. dający mniejszy błąd prognozy.
EN
In the article it was presented a model of demand forecast for intermodal operator transport services. Based on the shared data on the number of exported containers is presented the process of describing the observable occurrence on its past observations, as well as its evolution in the future. Two models were proposed: Regression and ARIMA. For each of them, was made a prediction of future observations. The received values for the predictions were compared and a model describing a better tested observable occurrence was chosen, i.e. that gives a smaller forecast error.
6
63%
|
|
nr 6
26-34
EN
In the article it was presented a model of demand forecast for intermodal operator transport services. Based on the shared data on the number of exported containers is presented the process of describing the observable occurrence on its past observations, as well as its evolution in the future. Two models were proposed: Regression and ARIMA. For each of them, was made a prediction of future observations. The received values for the predictions were compared and a model describing a better tested observable occurrence was chosen, i.e. that gives a smaller forecast error.
PL
Celem artykułu było opracowanie modelu prognozowania popytu na usługi transportowe operatora intermodalnego. Na podstawie udostępnionych danych, dotyczących liczby eksportowanych kontenerów, przedstawiono proces opisania zjawiska na podstawie jego przeszłych obserwacji, a także jego ewolucji w przyszłości. Zaproponowano dwa modele: regresji oraz ARIMA. Dla każdego z nich dokonano predykcji przyszłych obserwacji. Otrzymane wartości prognoz porównano i na tej podstawie wybrano model opisujący lepiej badane zjawisko, tzn. dający mniejszy błąd prognozy.
|
|
tom T. 35, z. 3
99--118
EN
The article presents the possibility of using the Cobb-Douglas production function for planning in a turbulent environment. A case study was carried out – the Cobb-Douglas function was used to examine the condition of the Polish hard coal mining industry and the progress which has been made after undertaking certain activities aimed at increasing the competitiveness of coal companies over recent years. Only the correct and confirmed identification of the causes of irregularities in the production process can allow for the introduction of effective remedies. The effectiveness of the solutions proposed by the author has been confirmed thanks to the simulation during which the impact of the proposed production strategy on the parameters of the CD function was examined. Three variants of production functions models were created and production productivity rates and marginal substitution rates were determined. The results enabled the verification of the progress of restructuring as well as identification of the origin of the observed problems and comparison of the current state with the results of analyses carried out in previous years. Scenarios of possible trend developments for the factors introduced into the function model in order to present remedial measures that could improve the process of hard coal extraction were created. The scenarios were created using the ARIMA class models. Which scenario is the most favourable was determined. A computer program, created by the author, for optimising the level and use of labor resources at the level of the entire coal company has been presented.
PL
W artykule zaprezentowano możliwość zastosowania funkcji produkcji Cobba-Douglasa do planowania w warunkach turbulentnego otoczenia. Przeprowadzono studium przypadku – funkcja Cobba-Douglasa wykorzystana została do zbadania stanu polskiego górnictwa węgla kamiennego oraz postępów podejmowanych w ostatnich latach działań mających na celu zwiększenie konkurencyjności spółek węglowych. Utworzono modele funkcji produkcji w 3 wariantach, wyznaczono wskaźniki produktywności produkcji oraz krańcową stopę substytucji. Pozyskane rezultaty umożliwiły zweryfikowanie postępów restrukturyzacji, określenie głównych przyczyn zidentyfikowanych problemów oraz porównanie obecnego stanu z wynikami analiz prowadzonych w ubiegłych latach. Tylko prawidłowa i potwierdzona identyfikacja przyczyn nieprawidłowości w procesie produkcji umożliwić może wprowadzenie właściwych środków zaradczych. Skuteczność zaproponowanych przez autorkę rozwiązań została potwierdzona dzięki symulacji, podczas której zbadano wpływ proponowanej strategii produkcji na parametry funkcji CD. W celu wskazania środków zaradczych mogących usprawnić proces wydobycia węgla kamiennego, utworzono scenariusze możliwego rozwoju trendów czynników wprowadzonych do modelu funkcji. Scenariusze utworzono z wykorzystaniem modeli klasy ARIMA. Określono, który scenariusz jest najbardziej korzystny. Zaprezentowano także stworzony przez autorkę program komputerowy, który ma za zadanie zoptymalizowanie poziomu i wykorzystania środków pracy żywej na poziomie całej spółki węglowej.
|
|
tom nr 4
2782--2796, CD2
PL
Od kilku lat bezpieczeństwo na drogach w Polsce systematycznie się poprawia. Obniża się zarówno liczba wypadków jak i ich ofiar. Mimo tego Polska zajmuje ostatnie miejsca w rankingu bezpieczeństwa na drogach wśród państw Unii Europejskiej. Wstępując do UE Polska zobowiązała się do realizacji polityki unijnej również w zakresie poprawy bezpieczeństwa w ruchu drogowym. Podstawą polityki drogowej krajów UE jest tzw. Wizja Zero, która przyświeca państwom wysoko rozwiniętym i jest filozofią zakładająca, że w perspektywie długofalowej nikt nie powinien ponosić ciężkich obrażeń, ani ginąć w wypadkach drogowych. Na pytanie, na ile jest to możliwe w Polsce, można udzielić odpowiedzi przeprowadzając prognozę długookresową dla wskaźników bezpieczeństwa w ruchu drogowym. W artykule przedstawiono prognozę liczby wypadków drogowych w województwie podkarpackim w 2015 roku w ujęciu sezonowym miesięcznym. Do wyznaczenia prognozy wykorzystano trzy modele sezonowe szeregów czasowych: autoregresyjny z trendem liniowym, ARIMA oraz model sieci neuronowych. Dane statystyczne dotyczyły odstępów miesięcznych i obejmowały okres od stycznia 2010 roku do grudnia 2014 roku. Prognozę miesięczną wyznaczono na kolejny rok, w okresie od stycznia 2015do grudnia 2015. Dane pochodziły ze strony głównej Komendy Policji. Obliczenia wykonano z użyciem programu Statistica 10 oraz arkusza kalkulacyjnego Excel. Oszacowane w pracy modele umożliwiają także przeprowadzenie prognoz długookresowych.
EN
For several years safety on the roads in Poland has been steadily improving. Both the number of accidents and their victims decrease. Despite this, Poland occupies the last place in the ranking of road safety among the EU countries. Poland, when accessing the EU, has been committed to the implementation of EU policies in improving road safety. The basis of the EU road policy is so-called Vision Zero project, which underlies the highly developed countries, and it is a philosophy which assumes that in the long term no one should suffer serious injury or fatalities in road traffic. The answer to the question whether it is possible in Poland can be found by conducting long-term forecasts for indicators of road safety. In this article the monthly forecasts of the number of road accidents in the Subcarpathian region were presented. To determine the forecast there were applied three seasonal time series models: autoregressive with linear trend, ARIMA and neural network model. Statistical data were related to monthly intervals and covered the period from January 2010 to December 2014. The monthly forecast is scheduled for next year, in the period from January 2015 to December 2015. The data came from the homepage of the Police. Calculations were performed by using Statistica 10 and an Excel spreadsheet. The models estimated in the paper allow also to carry out long-term forecasts.
|
|
tom Vol. 68, nr 4
653--667
EN
Time series models have been used to extract damage features in the measured structural response. In order to better extract the sensitive features in the signal and detect structural damage, this paper proposes a damage identification method that combines empirical mode decomposition (EMD) and Autoregressive Integrated Moving Average (ARIMA) models. EMD decomposes nonlinear and non-stationary signals into different intrinsic mode functions (IMFs) according to frequency. IMF reduces the complexity of the signal and makes it easier to extract damage-sensitive features (DSF). The ARIMA model is used to extract damage sensitive features in IMF signals. The damage sensitive characteristic value of each node is used to analyze the location and damage degree of the damaged structure of the bridge. Considering that there are usually multiple failures in the actual engineering structure, this paper focuses on analysing the location and damage degree of multi-damaged bridge structures. A 6-meter-long multi-destructive steel-whole vibration experiment proved the state of the method. Meanwhile, the other two damage identification methods are compared. The results demonstrate that the DSF can effectively identify the damage location of the structure, and the accuracy rate has increased by 22.98% and 18.4% on average respectively.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.