Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  AQM
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Wymagania stawiane współczesnym sieciom TCP/IP są w znacznym stopniu zróżnicowane ze względu na stosowanie aplikacji akceptujących odmienne poziomy parametrów QoS. Dodatkowo, wzrastający udział transmisji czasu rzeczywistego RTP wymusza poszukiwanie nowych metod aktywnego zarządzania obsługą pakietów w węzłach sieci. W prezentowanym artykule autorzy dokonują analizy efektywności przeciwdziałania przeciążeniom chwilowym przez algorytmy RED, REM i FuzzyREM (FREM) w odniesieniu do stopnia wykorzystania bufora wyjściowego oraz liczby odrzuconych pakietów.
EN
This paper presents active queue management mechanisms to provide congestion control in TCP/IP best-effort networks: RED, REM and FuzzyREM (FREM). Authors propose, how to better solve the drop tail and buffer utilization problems in the basic AQM mechanisms, with one buffer and a server.
|
|
tom Vol. 72, nr 5
art. no. e150333
EN
Fluid-flow approximation is an approach to modelling and evaluating the performance of vast computer networks. Due to varying traffic and performance of transmission protocols reacting to traffic overloads, computer networks are in a permanent transient state. The fluid-flow method main advantage is its ability to analyse these transient states. The article reviews and organises several versions of this approach, indicating a few errors. The main reason for these errors is confusion or lack of distinction between the two versions of the Internet Protocol – when the queue of packets at a node is too long, they may be destroyed or only marked as redundant. The paper compares and evaluates these fluid-flow approximation models with mild and aggressive settings of RED parameters. The authors build a software system with hitherto unprecedented capabilities regarding the size of the networks to be analysed and with innovative way of organising the calculations. The paper shows how large differences imprecise assumptions can introduce in quantitative results.
EN
Considering the phenomenal growth of network systems, congestion remains a threat to the quality of the service provided in such systems; hence, research on congestion control is still relevant. The Internet research community regards active queue management (AQM) as an effective approach for addressing congestion in network systems. Most of the existing AQM schemes possess static drop patterns and lack a self-adaptation mechanism; as such they do not work well for networks where the traffic load fluctuates. This paper proposes a self-adaptive random early detection (SARED) scheme that smartly adapts its drop pattern based on a current network’s traffic load in order to maintain improved and stable performance. Under light- to moderate-load conditions, SARED operates in nonlinear modes in order to maximize utilization and throughput, while it switches to a linear mode in order to avoid forced drops and congestion under high-load conditions. Our conducted experiments revealed that SARED provides optimal performance regardless of the condition of the traffic load.
4
48%
EN
The article proposes a model in which Diffusion Approximation is used to analyse the TCP/AQM transmission mechanism in a multinode computer network. In order to prevent traffic congestion, routers implement AQM (Active Queue Management) algorithms. We investigate the influence of using RED-based AQM mechanisms and the fractional controller PIγ on the transport layer. Additionally, we examine the cases in which the TCP and the UDP flows occur and analyse their mutual influence. Both transport protocols used are independent and work simultaneously. We compare our solution with the Fluid Flow approximation, demonstrating the advantages of Diffusion Approximation.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.