Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Ograniczanie wyników
Czasopisma help
Lata help
Autorzy help
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 56

Liczba wyników na stronie
first rewind previous Strona / 3 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  ALS
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 3 next fast forward last
1
Content available Lotnicze skanowanie laserowe Krakowa
100%
PL
Pozyskanie informacji wysokościowej o istniejących elementach pokrycia terenu, a także o samym terenie jest obecnie czymś oczywistym. Dane te są wręcz niezbędne do właściwego wypełniania zadań samorządu, szczególnie w planowaniu przestrzennym i architekturze, a także w wielu innych dziedzinach. Wiele miast zdecydowało sie na tworzenie trójwymiarowych modeli. Wybrane technologie są różne. W Warszawie wskazano na tworzenie trójwymiarowego modelu miasta na podstawie zdjęć lotniczych. Biuro Planowania Przestrzennego Urzędu Miasta Krakowa zdecydowało sie pozyskać informacje wysokościowe za pomocą lotniczego skanowania laserowego (znanego pod nazwa LIDAR lub ALS). Referat przybliży efekty lotniczego skanowania laserowego Krakowa.
EN
Nowadays, gathering information about existing element’s heights and the terrain itself is obvious. This data is essential to perform a number of tasks dealt with by the public administration, especially in the spatial planning, architecture and other fields. Many cities have decided to create spatial models (3D). The techniques of choice vary from one place to another. In Warsaw, urban spatial model is composed of aerial photographs. The Spatial Planning Office Municipality of Krakow decided to gather spatial information by airborne scanning (called LIDAR or ASL). This lecture gives an overview of airborne scanning of Krakow.
3
Content available remote Attempts at Automatic Detection of Railway Head Edges from Images and Laser Data
94%
EN
The more and more high resolution of aerial and ground images, as well as high density of laser data cause that they are more and more widely applied in many engineering projects. Given the current technical parameters, it is also possible to map railway infrastructure not only from the ground level but also from airborne locations (photogrammetry, laser scanning). Testing the usefulness of those data in obtaining information about railway infrastructure, and in particular, in detecting rail heads has been a subject of research of this paper authors. The paper presents results of experiments, consisting in verification of existing solutions and testing own algorithms for an automatic extraction of railway rail heads. The tested algorithms of object detecting and locating produced preliminary, satisfying results. The authors believe it to be reasonable to continue their research work.
4
Content available remote Numeryczny model zespołow urbanistycznych w Krakowie
94%
EN
The paper presents experience of the Spatial Planning Office at the Cracow City Hall connected with acquisition of data for elaboration of spatial development plans in the city. In drawing up these plans various data are used and information about height of existing objects is of crucial importance. Over the course of the years more and more advanced tools for building digital models were used for visualization of urban complexes for planning purposes. These were in turn models based on: 1) land and buildings register . these models could be only treated as an approximation, because land and buildings registration does not provide information about their height; 2) stereoscopic elaboration of aerial photos - featured with high accuracy, but the obstacle was the need to have specialized photogrammetric equipment and software and trained personnel with inborn ability to view stereoscopic images and relatively high labour-intensity; 3) aerial laser scanning (defined as LIDAR or ALS). In 2004, first laser scanning was made for Grunwaldzkie Roundabout and Wawel Castle by means of a TopEye MkII scanner mounted on a helicopter (an area of over 2 sq km, average height of the flight 300 meters above the terrain at a speed of 45 km per hour). 3.7 million points were registered which gave an average density of 1.5 point per sq m. These data were well suited for building a digital model of urban complexes. In 2006, laser scanning was performed for the whole area of Cracow by means of FLI-MAP 400 system installed on a helicopter (the height of flight 350 meters). A cloud of points with average density of at least 12 points per sq m was obtained. Such a density enables visualization not only of urban complexes but of individual objects, including determination of their height. The results obtained confirm usefulness of aerial laser scanning as the technique of data acquisition for creation of digital models of urban complexes with high accuracy and in great detail.
EN
Light Detection and Ranging (LiDAR) is a modern remote sensing technique, which provides accurate and precise topographical information. LiDAR method, also known as Airbone Laser Scanning (ALS) uses electromagnetical radiation in the optical range. This system consists of a transmiter and receiver of a laser beam, a scanning device and a real-time positioning system. The transmitter emits pulses of light that reflects from the ground surface (including natural surface, buildings and vegetation) and goes back to the receiver. The measurement of the time between sending and registration of the beam is used to calculate the distance to the points located on the Earth (Wehr & Lohr 1999). These points form a "point cloud", which is positioned in 3D spatial coordinate system. The density of these points could reach even 100 pts/m2 (Jaboyedoff et al. 2012). Points corresponding to the forest canopy or buildings could be removed in post-processing. It allows to create Digital Elevation Model (DEM), which reflects morphology very accurately. Through this, application of the model facilitates searching and interpretation of morphological forms, including those hidden under the forest canopy (Van Den Eeckhaut et al. 2007). The aim of this study is to test the application of the LiDAR technique as a support in mapping of the mass movement's landforms, for instance: landslides, debris slides, etc. This landforms were observed at the Podhale Flysch Area by Mastella (1975). The basic research method was to analyse the terrain model generated from the LiDAR data in comparison with the older cartographic sources and field verification. The laser scanning was carry out in the 2010 and the acquired data was used to derive the DEM. This model was compared with the topographic map at a scale 1:10 000, detailed geological map of Poland at a scale 1:50 000 and the ortophoto at a scale 1:5 000. DEM's horizontal resolution is 1 m and this model covers almost 100 km2 of the area among the villages of Biały Dunajec, Jurgów, Trybsz and Poronin. Analysing of the area was based on different ways of displaying. This allowed selection of three test areas (3 km2 each) as examples of the territory where morphological forms are associated with mass movements occur. The obtained results allows precise delimitation, determination of surface and morphology of forms resulting from mass movements, which enabled more accurate mapping of these landforms, particularly in the area of dense vegetation cover. Moreover, a comparative analysis of LiDAR model with older cartographic sources can confirm or exclude the existence of areas considered as endangered of mass movements occurence. Airbone Laser Scanning method is therefore a perfect complement to the field studies in geology and geomorphology.
EN
Current forest growing stock inventory methods used in Poland are based on statistical methods using field measurements of trees on circular sample plots. Such measurements are carried out with traditional equipment, i.e. callipers and range finders. Nowadays, remote sensing based inventory techniques are becoming more popular and have already been applied in North America and some Scandinavian countries. Remote sensing based forest inventories require a certain amount of ground sample plots, which serve either as reference data used for model calibration and/or as a validation dataset for the assessment of the accuracy of modelled variables. Using a set of 900 ground sample plots and Airborne Laser Scanner (ALS) from the Milicz forest district, a statistical model for the estimation of plot growing stock volume was developed. Next, the developed model was once again fitted to different variants of sample plot size and number of sample plots. Each variant was selected from a full 900 sample plot set. The selection started from 800, 700, 600, …, down to 25 plots, respectively, and was carried out in proportion to the dominant tree age range. To account for the area effect, each plot number variant was similarly tested with various sample plot areas, i.e. 500, 400, …, 100 m2. Sampling in each variant was repeated in order to take into account the effect of a single selection. The results showed a strong relationship between obtained modelling errors and the size and number of used sample plots. It has been demonstrated that the number of sample plots has no influence on the accuracy of GSV estimation above about 300-400 sample plots (about 500 sample plots for bias), whereas sample plot size has a visible impact on estimation accuracy, which reduces with decreasing sample plot size, regardless of the number of sample plots. If it is about precision, results showed that the influence of a single selection to be relevant only below 300-400 plots (about 500 for bias) and the same trend can be observed in each sample plot size variant. The results showed it is possible to strongly reduce the number of ground sample plots (minimum 300- 400), while still maintaining decent accuracy and precision levels, at least in similarly investigated forest conditions.
PL
W planowaniu usług transportowych bardzo ważne jest optymalne zaplanowanie trasy przejazdu. Do tego typu zadań wykorzystuje się nowoczesne narzędzia IT wyposażone w aktualne dane mapowe. Istotne są także informacje dotyczące ruchu drogowego jak i dane na temat stanu dróg. Te pierwsze można pozyskiwać z systemów ITS (Intelligent Transportation System - Inteligentne Systemy Transportowe), drugie udostępniane są przez zarządcę drogi. W przypadku stanu dróg krajowych GDDKiA (Główna Dyrekcja Dróg Krajowych i Autostrad), będąca ich zarządcą, przeprowadza corocznie pomiary w ramach m.in. serwisów SOSN (System Oceny Stanu Nawierzchni) i SOPO (System Oceny Stanu Poboczy i Odwodnienia Dróg). Współpracują one z system komputerowym BDD (Bank Danych Drogowych). Dodatkowym źródłem informacji o stanie dróg mogą być dane pozyskane w technologii skaningu laserowego. W pracy opisano możliwości wykorzystania lotniczego skaningu laserowego ALS (Airborne Laser Scanning). W oparciu o chmurę punktów ALS opracowano przekroje poprzeczne zeskanowanego fragmentu pasa drogowego. Opracowano także numeryczny model terenu. Uzyskane dane mogą być dodatkowym źródłem danych do systemów wspomagających planowanie transportu.
EN
In the planning of transport services, it is important to plan the optimal route. For this type of tasks modern IT tools equipped with up to date map data have been applied. Traffic information and data on the state of the roads are also relevant. The first one can be obtained from ITS (Intelligent Transportation System), the second is provided by the manager of the road. In the case of national roads GDDKiA (Główna Dyrekcja Dróg Krajowych i Autostrad - General Directorate for National Roads and Motorways) - the manager, conducts the annual measurements as part of, among others, SOSN and SOPO services. These services cooperate with the computer system BDD (Bank Danych Drogowych - Road Data Bank). Another source of information about the state of roads can be the data collected by means of laser scanning technology. This paper describes the possibilities of using airborne laser scanning (ALS). On the basis of the ALS point cloud cross-sections of the scanned roadway have been developed. Point cloud is also a good source for digital terrain model generation. The data obtained may be an additional source of data for transport planning support systems.
9
Content available Methods for Estimating Relative Accuracy of ALS Data
84%
PL
Wobec ciągłego rozwoju lotniczego skaningu laserowego ALS (ang. Airborne Laser Scanning) koniczne stało się opracowanie efektywnej metody kontroli jakości danych pozyskanych w ten sposób. Autor zaprezentował trzy główne spotykane w literaturze podejścia do oszacowania względnej dokładności danych ALS: metodę porównania modeli DEM (ang. Digital Terrain Model), metodę porównania punktów i powierzchni TIN (ang. Triangulated Irregular Network) oraz metodę porównania elementów liniowych. Każda z metod bazuje na wyborze różnego typu obiektów kontrolnych, rozmieszczonych w pasach pokrycia między sąsiadującymi szeregami ALS. Dodatkowo przedstawione zostanie nowe podejście, opierające się na porównaniu kalenic i siatek wysokościowych, opracowane w Polsce w celu oceny wzglę dnej dokładności danych LiDAR (ang. Light Detection and Ranging) w ramach projektu ISOK (informatyczny system osłony kraju przed nadzwyczajnymi zagrożeniami).
EN
In view of the continuous development of ALS (Airborne Laser Scanning), it has become necessary to develop an effective method of controlling the quality of data obtained with the use of this technology. The author presents three main approaches used in literature for assessing the relative accuracy of the ALS data: the method of comparing DEM models (Digital Terrain Model), the method of comparing points and TIN surfaces (Triangulated Irregular Network) and the method of comparing linear elements. Each of these methods is based on a selection of various types of control objects located in overlapping areas between strips of ALS. In addition, a new approach is presented, based on a comparison of roof ridge lines and elevation grids, developed in Poland in order to assess the relative accuracy of the LiDAR data (Light Detection and Ranging) within the ISOK project (IT System of the Country’s Protection against extreme hazards).
PL
W pracy przedstawiono wyniki badań nad zastosowaniem zintegrowanych danych z lotniczego skanowania laserowego (ALS) oraz zobrazowań satelitarnych (GeoEye-1) w celu automatycznego kartowania roślinności (obiektowa analiza obrazu) oraz generowania wskaźników przestrzennych 3D opisujących w sposób syntetyczny strukturę roślinności. Utworzone wskaźniki charakteryzują zróżnicowanie pionowe roślinności wysokiej (VDI – Vegetation Diversity Index) oraz objętość wypełnionej przez nią przestrzeni (FR – Filling Ratio, V2A – Volume to Area). Ponadto opracowany został wskaźnik VV2BV (Vegetation Volume to Built-up Volume) wyrażający stosunek objętości roślinności do objętości (kubatury) budynków. Wskaźnik ten stosowany może być do przyrodniczej waloryzacji obszarów zabudowanych.
EN
The paper presents results of studies on the application of integrated data from airborne laser scanning (ALS) and satellite imagery (GeoEye-1) for the automatic mapping of vegetation (object-oriented image analysis) and to generate 3D spatial indices describing the structure of the vegetation. Created indices characterize the vertical diversity of vegetation (VDI – Vegetation Diversity Index) and the amount of space filled by vegetation (FR – Filling Ratio, V2A – Volume to Area). In addition, the VV2BV index (Vegetation Volume to Built-up Volume) is expressing the ratio of volume of vegetation to volume of buildings. This indicator can be applied for valorization of built-up areas.
PL
Niniejsze opracowanie to projekt koncepcyjny rewitalizacji miejscowości Spała, wykonany z wykorzystaniem ortofotomap lotniczych oraz danych z lotniczego skanowania laserowego. Obejmuje całą miejscowość na tle regionu, ze szczególnym uwzględnieniem otoczenia stawu na rzece Gać i fragmentu ulicy Józefa Piłsudskiego. Miejscowość dzięki projektowanym zmianom zyskuje atrakcyjność i nowoczesny wygląd, jednocześnie zachowując aspekt historyczny miejsca. Projektowi przyświeca kilka idei, najważniejsze z nich to: nawiązanie do pierwotnej wizji projektowej, promocja aktywnego stylu życia, brak ingerencji w naturę, zastosowanie ekologicznych materiałów i rozwiązań oraz łagodne przejście między granicą lasu a projektowaną zielenią. W opracowaniu wskazane zostają możliwości praktycznego zastosowania ortofotomap i danych z lotniczego skanowania laserowego w projektowaniu architektonicznym m.in. do przygotowania projektu rewitalizacji, analiz widoczności oraz wykonania wizualizacji przestrzennych.
EN
The study is a conceptual design for the revitalization of fragments of Spała prepared with using airborne orthophotomaps and data from airborne laser scanning. From urban range perspective it covers the whole Spała, but especially pond on a Gać river surrounding, and part of Józef Piłsudski Street. Due to designed changes the area benefits from increased attractiveness and improved look, at the same time keeping its historical features. The project has been created having in mind following ideas: reference to the original design principle, promotion of an active, healthy lifestyle, avoiding interference with surrounding nature and using ecological materials and solutions. Moreover, there is a smooth transition between forest border and designed green. The paper suggests practical possibilities of using aerial orthophotos and data from airborne laser scanning in architectural design for example for the preparation of a revitalization project and selected views, cross-sections and visibility analyzes.
PL
W niniejszym opracowaniu zaprezentowano wyniki analiz przeprowadzonych w celu określenia wzajemnych relacji pomiędzy wysokością terenu pozyskaną różnymi metodami. Opierając się na wcześniejszych badaniach, porównano wysokości punktów pomierzone bezpośrednio techniką GPS w trybie RTK, uzyskane ze zdjęć kamerą cyfrową ADS40, chmurę punktów otrzymaną z nalotu ALS (Airborne Laser Scanner) oraz model GRID utworzony z danych ALS. Surowe dane ALS opracowano wstępnie w programie TerraScan. Wykorzystując algorytm aktywnego modelu TIN, przeprowadzono automatyczną klasyfikację, wydzielając punkty należące do pokrycia terenu od punktów leżących na powierzchni terenu. Na zbiorze punktów terenowych przeprowadzono triangulację w promieniu 20 m od punktów kontrolnych GPS. Dzięki temu można było obliczyć płaszczyzny trójkątów, w obszarze których zawarte były punkty GPS. Następnie dla współrzędnych (x, y) punktów GPS obliczono wysokości z danych ALS. W analogiczny sposób dla zadanych współrzędnych (x, y) odczytano wysokości ze zdjęć lotniczych. NMT w postaci GRID powstał również przy użyciu nakładki TerraScan z zadaną wielkością oczka siatki równą 1 m. Najniżej ze wszystkich zbiorów położone są punkty GPS, średnio o ponad 0.2 m poniżej danych ALS. Jak można było przypuszczać, chmura punktów ALS oraz model GRID leżą najbliżej siebie, przy czym model znajduje się średnio 0.1 m powyżej surowych danych ALS.
EN
Research of the vertical accuracy assessments according different methods are in the paper presented. The following data were compared: GPS RTK (as a reference), airborne stereo model from ADS40 camera, cloud of points from the ALS, and a GRID model created from the ALS data. Raw ALS data were initially preprocessed in TerraScan for classifying of ground points (using the active TIN model algorithm). Triangulations in a radius of 20 m around the GPS control points were performed. Then the height corresponding to GPS position (x, y) was from the triangle plane calculated. In the same way height for GPS position was obtained from ADS 40 stereo model. NMT in GRID model of 1 m grid size was generated in TerraScan basing on the points early classified as a ground. The lowest of the all data set was GPS surveying (average, more than 0.2 m below the ALS data). ALS points cloud and GRID model were the closest to each other but the NMT was an average of 0.1 m above the raw data.
PL
Inspiracją do podjęcia tematu było ogłoszenie przygotowań do projektu Polska 3D+. Po przedstawieniu tła analizy metod modelowania przypomniano zasady modelowania budynków, narzucone przez specyfikację INSPIRE. Omówiono uwarunkowania konwersji bazy danych przestrzennych 2D do 3D, na podstawie doświadczeń pozyskanych dzięki projektowi badawczemu wykonywanemu w AGH w latach 2009-2012. Badania wskazały na skaning lotniczy jako najlepsze źródło danych ale jednocześnie wykazały, że modele o wysokiej szczegółowości rozważane dla dużego obszaru mogą okazać mało wydajne dla technologii GIS. Przedstawiono systematyzację metod modelowania ze skaningu lotniczego z wyartykułowaniem zalet i wad podejścia parametrycznego i nieparametrycznego. Praca kończy się propozycją strategii modelowania w kontekście stanu georeferencyjnych baz danych w Polsce, perspektyw ich rozwoju oraz zapotrzebowania na dane przestrzenne z punktu widzenia społecznego i gospodarczego. Zaproponowano rozwiązanie etapowe, w którym wpierw próbuje się zastosować metodę parametryczną a w przypadku niepowodzenia przechodzi się do metody nieparametrycznej, co pozwala wymodelować budynki o złożonych kształtach, ale nie gwarantuje pełnej automatyzacji. Takie postępowanie zdaniem autorów byłoby optymalne przy realizacji projektu Polska 3D+.
EN
The inspiration to undertake the subject was the announcement of preparations for project Poland 3D+. First the presentation of background analysis of modelling methods was sketched. Then the principles of buildings modelling, imposed by INSPIRE specification, were recalled. Next the conditions of conversion of 2D spatial database to 3D ones, on the basis of experience acquired thanks to the research project performed in AGH in the years 2009-2012, was discussed. The research indicated airborne scanning as the best data source but at the same time indicated that highly detailed models considered for large areas may turn out to be poorly efficient for the GIS technology. Then the systematization of modelling methods of airborne scanning, with emphasis on advantages and disadvantages of the approach model driven and date driven, was presented. The thesis is concluded with a suggestion of modelling strategy in the context of condition of geo-reference databases in Poland, prospects of their development and demand for spatial data from the social and economic point of view. A gradual solution was suggested, in which, firstly, attempts are made to apply the model driven method and in case of failure, the data driven method is applied, which enables modelling the buildings of complex shapes but does not guarantee full automation. Such a procedure, in the opinion of the authors, would be optimal at implementation of project Poland 3D+.
PL
Głównym celem prezentowanych badań było opracowanie zautomatyzowanej metody kartowania klas pokrycia terenu występujących w przestrzeni miejskiej, na drodze integracji komplementarnych technologii, tj.: wysokorozdzielczych zobrazowań satelitarnych (GeoEye-1) oraz chmur punktów lotniczego skanowania laserowego (ALS). Cel cząstkowy polegał również na porównaniu dokładności klasyfikacji OBIA zbiorowisk roślinnych w oparciu o różne zestawy danych wejściowych, w stopniu możliwie maksymalnie zautomatyzowanym, bez stosowania jakichkolwiek pól treningowych. Jednocześnie autorzy postawili sobie za cel przedstawienie statystyk przestrzennych opisujących zieleń miejską w wymiarze 3D i zaproponowali szersze wykorzystanie danych ALS.
EN
The paper presents first results of advanced research concerning the use of integrated airborne laser scanning data and high resolution satellite images for the purpose of urban land cover mapping, particularly vegetation. Object-based image analysis was used for data processing, without any training areas and with three different approaches: A - only ALS data; B - based on GeoEye-1 satellite image only; C - based on both integrated datasets. Using integrated point clouds with spectral information stored in GeoEye-1 bands resulted in the best classification outcome (Kappa = 0.83), allowing detection of all classes that were the subject of analysis. Vertical structure assessment possibilities with the use of point cloud data were also shown in the paper.
PL
Celem pracy było zaprezentowanie metod zastosowanych w półautomatycznym procesie generowania numerycznych modeli bazujących na chmurze punktów zarejestrowanych technologią lotniczego skaningu laserowego (ang. Airborne Laser Scanning; ALS) w trudnych obszarach wysokogórskich Tatr. Teren badań o powierzchni około 60 km2, obejmował masyw Kasprowego Wierchu, Kuźnice oraz fragment miasta Zakopane ze stokami Gubałówki. Dane ALS pozyskano w 2007 roku w 33 pasach (RIEGL LMS-Q560), w zagęszczeniu, co najmniej 20 pkt/m2. Wpasowania połączonych skanów dokonano w oparciu o pomiary tachimetryczne powierzchni planarnych (dachy budynków) i dowiązanie przez dGPS. Błędy położenia punktów w płaszczyźnie poziomej wahały się w przedziale -0.09÷+0.28 m, a błędy wysokościowe w przedziale od -0.12÷0.14 m (HAE). Wykonawca dostarczył dane osobno z 2 skanerów, dla każdego: pierwsze i ostatnie odbicie impulsu. Ze względu na duży rozmiar plików podzielono ja na mniejsze generując 353 obszary robocze o rozmiarze 500·500 m dla każdego skanera i numeru odbicia. Przeprowadzono filtrację chmury punktów oraz ich klasyfikację do zestawów danych: „low points”, „ground", „low vegetation”, „medium vegetation”, „high vegetation” oraz „air points”. W celu wygenerowania NMPT stworzono klasę „ground_inverse" wymagającą kontroli operatora wspomagającego się ortofotomozaiką cyfrową (RGB\CIR; kamera Vexcel). Dla każdego przetwarzanego obszaru roboczego wygenerowano NMT oraz NMPT. Na podstawie zweryfikowanych modeli wygenerowano znormalizowany numeryczny model powierzchni terenu obrazujący wysokości względne obiektów występujących w obszarze opracowania (drzewa, piętro kosodrzewiny, budynki, linie energetyczne, liny wyciągów, etc). Analizy przestrzenne bazujące na wygenerowanych modelach otwierają zupełnie nowe możliwości licznym badaniom naukowym.
EN
The work presented was aimed at constructing a semi-automatic work-flow of Digital Surface Model (DSM) and Digital Terrain Model (DTM) generation based on an ALS point cloud gathered in a very difficult mountain area. The study area located in the Polish part of the Tatras Mountains covered about 60 km2 and included the Kasprowy Wierch, Kuźnice, and downtown Zakopane with the Gubałówka. ALS data, collected in 2007, consisted of 33 scans (minimum density of 20 points/m2). To combine all the scans and match them to the coordinate system, planar surfaces (building roofs) were measured using a tachimeter and a dGPS survey. Position errors of the ALS points in the horizontal plane varied from -0.09m to +0.28m; height errors ranged from -0.12m to 0.14m (HAE). The operator delivered the data separately from 2 Riegl Q- 560 scanners, for every FE and LE. The ALS files, due to their huge size, were divided into smaller ones and generated 353 sheets (500x500 m in size ) for every scanner and number of returns combination. The point cloud was filtered and assigned to the following levels: "low points”, "ground", "low vegetation”, "medium vegetation”, "high vegetation” and "air points”. To generate a DSM, a special class called "ground_inverse" was created; it required an operator control supported by a digital orthophoto (RGB\CIR; Vexcel camera). For every sheet processed, the DTM and DSM were generated. Those verified models served as a basis for developing an nDSM model using the ER Mapper software. The nDSM shows relative heights of objects in the study area (forest stands, dwarf mountain pines, buildings, power lines, ski lifts, etc.). Development of a precise DSM and nDSM as well as analyses of the nDSM open new perspectives for numerous scientific projects.
PL
Praca omawia nowe możliwości określania wysokości drzew i drzewostanów w oparciu o techniki lotniczego skaningu laserowego (LiDAR) porównując uzyskane wyniki do tradycyjnych metod inwentaryzacji lasu. Obiekt badawczy stanowił Obręb Piasek (Nadleśnictwo Chojna) o powierzchni 6.380,26 ha. Zestaw danych referencyjnych stanowiło 276 powierzchni próbnych (zwane TEREN) założone w 2006 roku oraz zaktualizowana baza danych opisowych (SILP) z roku 2005. Do analiz wysokości drzew na powierzchniach kołowych oraz całych wydzieleń wykonywanych w oparciu o ALS, posłużył zNMPT (nDSM; 90 percentyl). Badania wykazały, iż na podstawie ALS uzyskano wyższe wartości wysokości drzewostanów w porównaniu do wyników urządzania lasu (SILP 2005). Największą zgodność wyników z danymi referencyjnymi zaobserwowano w przypadku całych drzewostanów liściastych, dla których średnie różnice wynosiły: +1.07 m (LIDAR - SILP) ÷ -1.72 m (TEREN – LIDAR). Inaczej było w przypadku drzewostanów iglastych +3.58 m (LIDAR - SILP)÷ -3.01 m (TEREN – LIDAR). W przypadku niektórych powierzchni kołowych stwierdzono tendencję zaniżania wysokości określanej na podstawie ALS (drzewostany iglaste: -0.02m (LIDAR - SILP) ÷ +0.76 m (TEREN – LIDAR); d-stany liściaste -0.41 m (LIDAR - SILP), co potwierdzają w zasadzie wyniki innych prac naukowych. Otrzymane wyniki pozwalają wnioskować, iż technologia ALS wspomagana ortofotomapami doskonale nadaje się do obiektywnego i precyzyjnego określania wysokości całych drzewostanów i rewizji wektora LMN.
EN
The paper describes the most recent development in using the airborne laser scanning technology (ALS; LiDAR) to determine heights of individual trees and tree stands and compares the results to data derived from the traditional forest inventory. The Piasek Forest of 6,380.26 ha (the Chojna forest district managed by the Regional State Forest Administration in Szczeci) was chosen as a test site. The first reference data set for the forest stand height was obtained from the SILP data base (LAS tables) updated a year (2005) before the ALS was performed. The other reference data set (called TERRAIN) was assembled during the ground-truthing campaign in 2006, which resulted in establishing 276 circular inventory plots (148 plots in 67 deciduous stands and 128 plots in 66 coniferous forest stands). The nDSM (90th percentile) was selected as the input data for the height analysis. The results showed that the ALS-based tree heights were higher than those recorded in the official SILP database for the Chojna district. In the deciduous forest stand, differences between the LiDAR and SILP data were not particularly large and amounted to as little as about 1.07 m (R² = 0.92). Differences between the LIDAR and TERRAIN data sets were about 1.72 m (R²=0.77), higher values being obtained using ALS. In the coniferous stands, differences between the LIDAR and SILP were considerably higher, up to +3.58 m (R² = 0.93), whereas the other TERRAIN set, when compared to the LIDAR data, showed that the traditional forest inventory underestimated the Scots pine height by about -3.01 m. A detailed analyses revealed that, in some inventory plots, the LIDAR data underestimated the tree stand height (LIDAR vs SILP; coniferous: -0.02m; deciduous: -0.41 m). Such underestimation may be explained by the lack of signals coming back from warming tops of the trees. The results obtained allow to conclude that the LIDAR technology supported by the digital orthophotomaps can objectively and precisely supply height data not only for single trees, but it makes it possible to measure the whole stand (whole trees). Therefore, the existing inventory methods need to be changed to make forest planning and monitoring more precise, faster, comparable, cheaper, and not dependable on subjective measurements.
EN
In the process of tree stand parameter estimation based on data from airborne laser scanning ALS, the detection of a single tree is an important starting point. The aim of this work is to develop optimal values of parameters in the process of detection of tops and segmentation of stands on the basis of ALS data analysis. The research was carried out on the basis of ALS data from raids carried out in 2007 and 2017 on a fragment of the Zajma forest district in the Zednia forest inspectorate (north-eastern Poland). Parameters analyzed included: Ground Sampling Distance [m], the level of smoothing of the Canopy Height Model (CHM) with the Gaussian filter (the size of the moving window, the value of standard deviation), the filtration of the output point cloud, as well as the application of the additional interpolation algorithm CHM based on the analysis of raster cells neighborhood. The research has shown that it is possible to indicate detection parameters that ensure a very high correlation between the number of automatically detected treetops and the number of trunks found during fieldwork. Importantly, the optimal detection parameters developed for remote-sensing materials from the years 2007 and 2017 differ slightly, which ensures generally high accuracy of ALS data and the possibility of implementing the values of these parameters in other research objects.
PL
W artykule opisana jest w pełni automatyczna metoda budowy trójwymiarowych modeli budynków przedstawionych za pomocą linii szkieletowych. Budynki rekonstruowane są na podstawie chmury punktów, bez potrzeby wsparcia w postaci dodatkowych informacji i zbiorów danych. Warunek ten dodatkowo komplikuje zadanie rekonstrukcji, lecz jednocześnie czyni przedstawiony algorytm dużo bardziej uniwersalnym. Topologiczny model budynku tworzony jest na podstawie punktów charakterystycznych, wyznaczających miejsca przecięć sąsiednich połaci dachowych, bądź linii rzutów ścian. Punkty charakterystyczne zlokalizowane na zewnętrznych krawędziach budynków wyznaczane są za pomocą autorskiego algorytmu wykrywającego kontury. W kolejnym etapie rekonstrukcji określone są relacje topologiczne między punktami, które pozwalają na wyznaczenie linii krawędziowych poszczególnych płaszczyzn budynku. Ostatecznie, przeprowadzone jest wyrównanie punktów wierzchołkowych i linii krawędziowych, co pozwala na otrzymanie zregularyzowanego modelu zabudowy. Algorytm przetestowany został z wykorzystaniem danych lotniczego skaningu laserowego przedstawiających fragment zabudowy małego miasta. W wyniku przeprowadzonych eksperymentów można stwierdzić, że opisana metoda pozwala na poprawne i wydajne generowanie szkieletowych modeli budynków o skomplikowanej strukturze.
EN
This paper presents a fully automatic method for generation of 3D building skeleton models. Objects are reconstructed from point clouds, without the need for a support, like additional information and data sets. This condition makes the reconstruction task even more complicated, however at the same time, presented algorithm becomes much more versatile. Topological model of a building is created based on characteristic points, which determine intersections of adjacent planes of the roof or walls. The characteristic points located on the outer edges of a building are extracted using author’s contour detecting algorithm. In the next stage of reconstruction topological relations between the points are defined, which allow to detect contour lines of individual planes of a building. Finally, adjustment of vertex points and edge lines is performed that enables to obtain regularized building model. The algorithm was tested against airborne laser scanning data set that shows a part of the small town. As a result of experiments it can be concluded that the described method allows the correct generation of skeletal building models with a complex structure.
PL
W artykule przedstawiono możliwość wykorzystania danych lotniczego skanowania laserowego, jako nowoczesnego narzędzia wykorzystywanego przy inwentaryzacji oraz modelowaniu 3D obiektów związanych z zawodem architekta krajobrazu. Aby udowodnić użyteczność tego narzędzia, przeprowadzono działania inwentaryzacyjne na wybranych obiektach zabytkowych należących do Twierdzy Kraków – zespołu dzieł obronnych z czasów zaboru austriackiego na terenie Krakowa. Problematyka przedstawionej pracy dotyczy możliwości wykorzystania danych ALS do identyfikacji form fortyfikacji, wizualizacji obiektów oraz wykonania analiz widoczności w celu oceny przemian krajobrazu warownego Twierdzy Kraków. Przeprowadzone analizy 3D GIS wykazały dużą przydatność danych ze skaningu laserowego do identyfikacji fortyfikacji, inwentaryzacji stanu istniejącego na poziomie krajobrazowym, wizualizacji tych obiektów oraz wykonania analiz, pomocnych w podejmowaniu decyzji dotyczących przyszłego zagospodarowania krajobrazu warownego, a także możliwości formułowania szczegółowych zapisów w planach miejscowych. W przeciwieństwie do tradycyjnych metod pozyskiwania informacji dane ALS stanowią nową generację danych geoprzestrzennych. Stwarzają możliwość opracowania dokładniejszej metody wykorzystywanej w rewaloryzacji, ochronie i inwentaryzacji architektury militarnej.
EN
This article features the airborne laser scanning (ALS) data applicability for classification and modelling of 3D objects in a landscape architecture related professions. In order to validate the practicality and efficiency of ALS, classification of selected objects of the Krakow Fortress has been carried out (defence objects from the time of Austro-Hungarian partition annexation period were the subject of this analysis). With ALS data this study identifies forms of fortifications, visualizes data and analyzes visibility to be the base of contemporary decisions and planning of landscape of the Krakow Fortress. 3D GIS analysis showed the high usefulness to identify fortification, visualize these objects and perform visibility analysis. In contrast to traditional methods (inventories and historical documentation), laser scanning data are the new generation of geospatial data. They offer an opportunity to develop a new, faster technology used for the needs of restoration, preservation and inventory of military architecture and landscape planning.
EN
The aim of this paper is to overview and analyse existing methods for estimation of tree geometric parameters from Airborne Laser Scanning (ALS) data in the context of their possible application for agricultural areas. A detailed description of the estimation methodology proposed by various research groups is presented, including Canopy Height Model creation, tree identification, crown delineation in 2D and 3D, estimation of tree height, crown base height, crown diameters and crown volume. Efficiency and drawbacks of presented methods are identified. It is also analysed, whether the existing methods, originally developed for forestry areas, are suitable for agricultural trees.
PL
Celami pracy są przegląd oraz analiza istniejących metod estymacji parametrów geometrycznych drzew na podstawie danych lotniczego skaningu laserowego w kontekście ich aplikacji dla drzew uprawnych. W artykule przedstawiono szczegółowy opis metod estymacji tych parametrów stosowanych przez różne grupy badawcze. Opis uwzględnia budowę wysokościowego modelu koron, identyfikację drzew, identyfikację kształtu koron w 2D i 3D, estymację wysokości drzew, wysokości podstawy koron, średnic oraz objętości koron. Wskazano zalety i wady zaprezentowanych metod. Przeanalizowano także, czy opisane metody rozwinięte na obszarach leśnych mogą być wykorzystywane w przypadku drzew uprawnych.
first rewind previous Strona / 3 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.