Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 2

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  ADAM
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Identification plays an important role in relation to control objects and processes as it enables the control system to be properly tuned. The identification methods described in this paper use the Stochastic Gradient Descent algorithms, which have so far been successfully presented in machine learning. The article presents the results of the Adam and AMSGrad algorithms for online estimation of the Dielectric Electroactive Polymer actuator (DEAP) parameters. This work also aims to validate the learning by batch methodology, which allows to obtain faster convergence and more reliable parameter estimation. This approach is innovative in the field of identification of control systems. The research was supplemented with the analysis of the variable amplitude of the input signal. The dynamics of the DEAP parameter convergence depending on the normalization process was presented. Our research has shown how to effectively identify parameters with the use of innovative optimization methods. The results presented graphically confirm that this approach can be successfully applied in the field of control systems.
EN
Water resources, consisting of surface water and groundwater, are considered to be among the crucial natural resources in most arid and semiarid regions. Groundwater resources as the sustainable yields can be predicted, whereas this is one of the important stages in water resource management. To this end, several models such as mathematical, statistical, empirical, and conceptual can be employed. In this paper, machine learning and deep learning methods as conceptual ones are applied for the simulations. The selected models are support vector regression (SVR), adaptive neuro-fuzzy inference system (ANFIS), and multilayer perceptron (MLP). Next, these models are optimized with the adaptive moment estimation (ADAM) optimization algorithm which results in hybrid models. The hyper-parameters of the stated models are optimized with the ADAM method. The root mean squared error (RMSE), mean absolute error (MAE), mean squared error (MSE), and coefficient of determination (R2) are used to evaluate the accuracy of the simulated groundwater level. To this end, the aquifer hydrograph is used to compare the results with observations data. So, the RMSE and R2 show that the accuracy of the machine learning and deep learning models is better than the numerical model for the given data. Moreover, the MSE is approximately the same in all three cases (ranging from 0.7113 to 0.6504). Also, the total value of R2 and RMSE for the best hybrid model is 0.9617 and 0.7313, respectively, which are obtained from the model output. The results show that all three techniques are useful tools for modeling hydrological processes in agriculture and their computational capabilities and memory are similar.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.