A design methodology for the production of complex shapes through near net shape manufacturing is presented. The data was obtained by using a 3-D circular braiding machine that was designed and constructed by Prof. Dr. Aly El-Shiekh. Production of a braided truss shows the procedures required for producing right-angled and contoured parts, as well as the feasibility of producing such parts. The FRPC (Fibre-Reinforced Polymer Composites) truss reinforcement system was designed to simulate the conventional iron truss reinforcement system typically used in a concrete bridge deck. A technical comparison of FRPC (Fibre-Reinforced Polymer Composites) truss and steel truss is carried out with respect to weight, cost, compression and bending strength. Experimental results are presented to show how the nominal stresses (compression and bending) of 3-D braided composite trusses depend on truss height, truss width and truss angle, i.e. the number of working layers, number of yarns per each layer, braiding pattern and number of beats per cycle. It is shown that accurate mathematical models could be developed from the laboratory data to predict the compression and bending stresses of the truss from the basic braiding machine settings by using factorial design. The excellent fit of the predicted values with the measured values confirms that the mathematical models developed can be used to make accurate prediction of the compression and bending stresses from a knowledge of the truss specifications.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.