According to standard definition of product of σ-ideals we consider two types of ideals: product σ-ideal and its generalisation - permuted product σ-ideal. It is worth while to point out here that in the opposition to the traditional definition of product of ideals we don’t limit our considerations to class of Borel sets.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
For a σ-ideal I of sets in a Polish space X and for A ⊆ $X^2$, we consider the generalized projection 𝛷(A) of A given by 𝛷(A) = {x ∈ X: A_x ∉ I}, where $A_x$ ={y ∈ X: 〈x,y〉∈ A}. We study the behaviour of 𝛷 with respect to Borel and analytic sets in the case when I is a $∑_{2}^{0}$-supported σ-ideal. In particular, we give an alternative proof of the recent result of Kechris showing that 𝛷 [$∑_{1}^{1}(X^2)]=∑_{1}^{1}(X)$ for a wide class of $∑_{2}^{0}$-supported σ-ideals.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.