Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 8

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  żużel wielkopiecowy granulowany
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
PL
Produkcja cementu odpowiada za ok. 5% światowej antropogenicznej emisji dwutlenku węgla do atmosfery [1÷2]. Szacuje się, że produkcja tony klinkieru powoduje emisję do atmosfery około 800÷850 kg CO2 [1]. Emisja pochodzi głównie z rozkładu węglanu wapnia (CaCO3) - ok. 60% oraz ze spalania paliw w trakcie wypalania (syntezy) klinkieru portlandzkiego - ok. 40%. Ograniczenie tej emisji staje się coraz bardzie istotne w kontekście ocieplania się klimatu. W Polsce przemysł cementowy dzięki sukcesywnie prowadzonym od 1990 roku modernizacjom ograniczył emisję CO2 na tonę cementu o ok. 40% [1]. Było to możliwe dzięki modernizacji procesu wypału klinkieru, wprowadzeniu do stosowania paliw alternatywnych w miejsce węgla oraz upowszechnieniu stosowania cementów portlandzkich wieloskładnikowych CEM II/A, B oraz cementów hutniczych CEM III/A w miejsce cementu CEM I. Cementy wieloskładnikowe charakteryzują się tym, że zawierają oprócz klinkieru i regulatora czasu wiązania, tylko jeden nieklinkierowy składnik główny, którym przeważnie był popiół lotny krzemionkowy (V), granulowany żużel wielkopiecowy (S), a także w mniejszych ilościach wapień (L, LL).
EN
Cement production accounts for about 5% of global anthropogenic carbon dioxide emissions to the atmosphere [1÷2]. It is estimated that the production of a ton of clinker emits about 800÷850 kg of CO2 [1]. The emissions come mainly from the decomposition of calcium carbonate (CaCO3) - about 60%, and from the combustion of fuels during the burning of Portland clinker - about 40%. Reducing these emissions is becoming increasingly important in the context of climate changing. In Poland, the cement industry, thanks to successive modernizations since 1990, has reduced CO2 emissions per ton of cement by about 40% [1]. This was possible due to the modernization of the clinker burning process, the introduction of alternative fuels in place of coal, and the widespread use of cements with non-clinker main components instead of CEM I Portland cements. Mainly these were CEM II/A, B multi-component Portland cements and CEM III/A metallurgical cements. They were characterized by the fact that they contained, in addition to the clinker and the setting time regulator, only one non-clinker main ingredient, which was mostly silica fly ash (V), granulated blast furnace slag (S), and in smaller amounts of limestone (L, LL).
EN
The mineral sequestration using waste products is a method of reducing CO2 emissions that is particularly interesting for major emitters and producers of mineral wastes, such as iron and steel industries. The CO2 emissions from iron and steel production amounted to 6,181.07 kt in 2014 (PNIR 2016). The aforementioned industry participates in the EU emission trading system (EU ETS). However, blast furnace processes produce mineral waste – slag with a high content of CaO which can be used to reduce CO2 emissions. Metallurgical slag can be used to carry out direct (a one-step process) or indirect (two-stage process) process of mineral sequestration of carbon dioxide. The paper presents the degree of carbonation of the examined samples of granulated blast furnace slags defined by the six-digit code (10 02 01) for the waste and the respective two-digit (10 02) chapter heading, according to the Regulation of the Minister of the Environment of 9 December 2014 on the waste catalogue. The carbonation process used the direct gas-solid method. The slags were wetted on the surface and treated with CO2 for 28 days; the obtained results were compared with the analysis of fresh waste products. The analyzed slags are characterized by a high content of calcium (nearly 24%), while their theoretical binding capacity of CO2 is up to 34.1%. The X-ray diffraction (XRD) analysis of the phase composition of slags has revealed the presence of amorphous glass phase, which was confirmed with the thermogravimetric (DTA/TG) analysis. The process of mineral sequestration of CO2 has resulted in a significant amount (9.32%) of calcium carbonate – calcite, while the calculated degree of carbonation of the examined blast furnace slag is up to 39%. The high content of calcium, and a significant content of CaCO3–calcite, has confirmed the suitability of the discussed waste products to reduce carbon dioxide emissions.
PL
Mineralna sekwestracja przy wykorzystaniu odpadów jest metodą redukcji CO2 szczególnie interesującą dla znaczących emitentów, którzy są zarazem wytwórcami odpadów mineralnych, tak jak przemysł hutniczy. Emisja CO2 z produkcji żelaza i stali wyniosła 6 181,07 kt w 2014 roku (PNIR 2016). Przemysł ten bierze udział w systemie handlu pozwoleniami na emisję ditelnku węgla − EU ETS, a zarazem w procesach wielkopiecowych powstają odpady mineralne − żużle o wysokiej zawartości CaO, które mogą być stosowane do redukcji emisji CO2. Żużle hutnicze mogą być stosowane do realizacji procesu mineralnej sekwestracji ditelenku węgla metodą bezpośrednią (jednoetapową) oraz pośrednią (dwuetapową). W artykule przedstawiono wyniki badań stopnia karbonatyzacji granulowanych żużli wielkopiecowych klasyfikowanych według Rozporządzenia Ministra Środowiska z dnia 9 grudnia 2014 r. w sprawie katalogu odpadów do podgrupy 10 02 odpady z hutnictwa żelaza i stali jako odpad o kodzie 10 02 01. Do prowadzenia procesu karbonatyzacji zastosowano metodę bezpośrednią gaz−ciało stałe. Zwilżone żużle były poddawane procesowi sekwestracji ditelnku węgla przez 28 dni, a uzyskane wyniki porównano z analizą świeżych odpadów. Poddane badaniom żużle charakteryzują się wysoką zawartością wapnia, wynoszącą prawie 24%, a ich obliczona teoretyczna pojemność związania CO2 wynosi 34,1%. Analiza składu fazowego żużli wykorzystanych w badaniach, prowadzona metodą rentgenograficzną, wykazała jedynie obecność amorficznej fazy szklistej, co potwierdzają wyniki analizy DTA/TG. Proces mineralnej sekwestracji CO2 spowodowało powstanie w znaczącej ilości 9,32% węglanu wapnia–kalcytu, a obliczony stopień karbonatyzacji badanych żużli wielkopiecowych wynosi maksymalnie 39%. Wysoka zawartość wapnia oraz powstanie znaczącej zawartości CaCO3–kalcytu, potwierdza szczególne predyspozycje tych odpadów do redukcji emisji ditlenku węgla.
3
Content available remote The influence of fly ash type on properties of cements composites
84%
|
|
tom Vol. 63, iss. 2
191--201
EN
This paper presents the results of tests carried out on mortars prepared with fly ash – slag cements. Two types of fly ash were used – siliceous (V) and calcareous (W). The influence of fly ash type on properties of mortars was evaluated on the base of results of following tests: compressive strength, consistency and its stability in time and chloride ions permeability and carbonation depth. It was claimed that mortars made with cements containing calcareous fly ash (W) are characterized by higher compressive strength (at each age). Moreover, negative impact of calcareous fly ash (W) on rheological properties of mortars was observed. Durability tests revealed favourable effect of calcareous fly ash on resistance of mortars to corrosive agents attack – lower chloride ions permeability and carbonation depth in comparison to siliceous fly ash – slag cement mortars.
|
2013
|
tom Vol. 12, nr 3
215--222
PL
W pracy zaprezentowano wyniki badań właściwości cementów popiołowo - żużlowych o nienormowym składzie. Stosowano popiół lotny wapienny w postaci naturalnej (nieprzetworzonej) i aktywowany przez przemiał. Stwierdzono, że popiół lotny wapienny, obok granulowanego żużla wielkopiecowego, może być składnikiem cementów o niskiej zawartości klinkieru portlandzkiego (ok. 40%). Cementy te, w porównaniu do cementu portlandzkiego CEM I, charakteryzują się niskim ciepłem hydratacji i opóźnionym początkiem czasu wiązania, oraz niekorzystnym wpływem na konsystencję zapraw i jej utrzymanie w czasie. Wytwarzanie cementów popiołowo–żużlowych jest możliwe w klasie wytrzymałości 32,5 N gdy składnikiem jest popiół wapienny w stanie naturalnym oraz w klasach 32,5 N, 32,5 R oraz 42,5 N gdy stosowany jest popiół zmielony. Popiół poddany aktywacji przez przemiał charakteryzuje się wyższą aktywnością.
EN
The paper presents the tests results of the properties of non - standard fly ash - slag cements composition. Both natural (unprocessed) and activated by grinding calcareous fly ash was used. It was found that the calcareous fly ash next to the granulated blast furnace slag may be a component of low - clinker cements (ca. 40%). Those cements are characterized by low heat of hydration and overdue of initial setting time in comparison with Ordinary Portland Cement, moreover they have an unfavorable effect on consistency and its upkeep in time. Production of fly ash - slag cements is possible for strength class 32,5 N when the component of cement is raw fly ash, and for strength classes 32,5 N, 32,5 R and 42,5 N when ground fly ash was used. Fly ash activated by grinding was characterized by higher activity.
|
|
tom R. 94, nr 11-12
186--191
PL
Artykuł jest streszczeniem pracy magisterskiej dotyczącej badania i zastosowania w budownictwie betonów geopolimerowych z dodatkiem kruszywa z recyklingu. Zaprezentowano badania optymalizacyjne z dwoma zmiennymi: zawartość kruszywa z recyklingu i granulowanego mielonego żużla wielkopiecowego. Wybrany na podstawie badań materiał o najwyższej wytrzymałości i najlepszych parametrach przyjęto do zaprojektowania elementu mostu.
EN
The article is a summary of the master’s thesis on the study and application of geopolymer concretes with the addition of recycled aggregate in construction. Optimization studies with two variables were presented: the content of recycled aggregate and granulated ground blast furnace slag. The material with the highest strength and the best parameters selected on the basis of tests was adopted to design the bridge element.
7
Content available remote Stosowanie dodatków typu II w składzie betonu wg normy PN-EN 206:2014
67%
|
|
tom nr 10
110--111
PL
W artykule omówiono rodzaje i możliwości stosowania dodatków typu II do betonu w kontekście wymagań normy PN-EN 206. Przedstawiono również zasady stosowania dodatków wg dopuszczonych normą koncepcji, pozwalających na ich uwzględnienie w składzie betonu.
EN
In the paper application possibilities and kinds of additives type II for concrete were discussed in terms of requirements of PN-EN 206 standard. Also guidelines for the use of additives according to the approved conceptions which allow to include the additive in the concrete composition were presented.
PL
Celem artykułu jest przedstawienie wpływu wielkości współczynnika k (0,6; 0,8; 1,0) na właściwości betonu zawierającego w swym składzie zmielony granulowany żużel wielkopiecowy jako dodatek typu II. Betony o przyjętych wielkościach współczynnika k wynoszących odpowiednio: 0,6 i 0,8 cechowały się optymalnymi właściwościami z punktu widzenia wytrzymałości na ściskanie i trwałości betonu. Uwzględniając, aspekty aplikacyjne oraz politykę zrównoważonego rozwoju wielkość współczynnika k równa 0,8 jest wielkością rekomendowaną.
EN
The aim of the article is to present the effect of the k-factor (0,6; 0,8; 1,0) on the properties of concrete containing ground granulated blast furnace slag as a type II additive. Concrete with the adopted k-factor values, respectively: 0,6 and 0,8, characterized by optimal properties in terms of compressive strength and durability of concrete. Considering the application aspects as the sustainable development policy, the value of the k-factor equals to 0,8 is the recommended value.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.