Upgrading concepts for the Bioblok MU200a wastewater treatment plant have been presented. The main goals were to achieve an effective nitrogen removal and reduce energy demand. The reference version has been presented, followed by two retrofitting options: introduction of intermittent aeration for alternating aerobic and anoxic conditions, additionally including a retrofitting option to a hybrid technology that combines advantages of activated sludge and biofilm. To design and assess both variants, the ASM3 model was used, running on the Simba# simulator. A rather complex biofilm model, necessary for the hybrid concept, was bypassed by installing a separate activated sludge process differing in terms of sludge age and disposal of its excess sludge to the reactor. In this way, favorable technological parameters for efficient wastewater treatment could be assessed. Both upgrading concepts can be recommended for their satisfactory treatment effectiveness, feasibility in existing plants and considerable energy savings. The significance of the modelled effects was statistically confirmed two-tailed Student’s t-test.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This article focuses on developing a methodology which can be used to estimate the concentration of dyestuff released from textiles during domestic laundering, so that further studies involving decolorization of the wastewater from domestic washing machine can be conducted in an attempt to develop eco-friendly domestic washing processes. Due to the complexity of the problem, an approach was adopted so that, as an initial step, synthetic red and blue reactive dye solutions were prepared as representative wastewater solutions using Reactive Red 195 and Reactive Blue 19 dyestuffs for the estimation of dye concentration. This was followed by an experimental work consisting of washing tests involving the calculation of dye concentration in the wastewater obtained from domestic washing machine as well as tergotometer as a machine simulator. For this part of the work, dyed cotton plain jersey fabric samples were used to obtain wastewater solutions. All the dye solutions and the wastewater samples were measured with VIS spectrophotometer, and the maximum absorbance values were obtained at relevant wavelengths. Although the characteristics of absorbance spectra of synthetic and wastewater solutions were very different, the maximum absorbance values of both solutions overlapped at relevant wavelengths. The concentration of the dyestuff was calculated from the absorbance values measured at 540 and 592 nm for the red and blue, respectively. The statistical analysis of the data suggested that tergotometer can be used as a domestic washing machine simulator. Moreover, the regression analysis done for the dyestuff concentration under discussion revealed that the most significant factor was the washing step (main wash or rinsing) (89.5%) followed by color (red or blue) (3.4%) and washing device (washing machine or tergotometer) (1.5%).
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.