Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
Wyszukiwano:
w słowach kluczowych:  ściana komórkowa
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
100%
|
|
nr 3
415-429
PL
Ściana komórkowa, oparta na celulozowym szkielecie, jest charakterystyczną strukturą roślin lądowych i glonów. Przez trzysta lat uważana była za bierną i ograniczającą wzrost i rozwój komórek. Dziś wiadomo, że ściana, otaczając i zamykając każdą komórkę, umożliwia jej także kontakt z sąsiednimi komórkami i ze środowiskiem, przenikanie substancji i cząsteczek sygnałowych, kontroluje kierunek wzrostu, nadając kształt komórce i całej roślinie, a także chroni przed atakami patogenów i niekorzystnymi czynnikami środowiska. Aby właściwie wypełniać te zadania, ściana musi być nie tylko dynamiczną i ściśle regulowaną strukturą, odbierającą i odpowiadającą na wewnętrzne i zewnętrzne sygnały, ale jak uważają niektórzy, całym systemem, "inteligentną granicą", zdolną do koordynacji procesów wzrostu i rozwoju indywidualnych komórek, prowadzących do odpowiedzi całej rośliny na zmieniające się warunki środowiska. To skomplikowane zadanie jest realizowane przez ściany, których skład różni się w zależności od typu komórki, jej stadium rozwoju czy nawet pory roku. Obecna praca jest próbą przybliżenia czytelnikowi choć niewielkiej części nowo poznanych zagadnień, związanych ze ścianą, jej rolą, mechanizmami funkcjonowania oraz praktycznym wykorzystaniem w rolnictwie, przemyśle spożywczym, papierniczym czy energetycznym.
EN
A distinguishing feature of plant and algae cells is the presence of a cellulose-rich wall. For three hundred years plant cell walls were described as static and rigid. Today cell walls are considered as very dynamic structures which enclose each cell still allowing transfer of solutes and signaling molecules between the cells themselves and the cells and environment, control of cells and the whole plant form, growth and development; they play also a significant role in plant defense and their responses to environmental stresses. To fulfill these functions plant cell walls must be a tightly regulated dynamic system in charge of sensing, processing and responding to internal and external cellular signals, functioning as an "intelligent frontier" capable to co-ordinate growth of the whole-plant by optimizing growth and differentiation of individual cells. This paper attempts to review a small part of current works aimed to elucidate the role and functions of plant cell walls and their practical implications for obtainment of plant-based products: food, fodder, textiles, paper, biopolymers and biofuels.
PL
Podczas obróbki cieplnej warzyw i owoców zachodzą zróżnicowane zmiany w strukturze ich ściany komórkowej. Na podstawie przeprowadzonych badań własnych w artykule opisano zmiany w strukturze ściany komórkowej kapusty białej, czerwonej, włoskiej, marchwi, ziemniaków oraz jabłek, które zachodzą podczas ich obróbki cieplnej w wodzie, parze wodnej i podczas pieczenia. Polegają one na pogrubieniu ścian komórkowych, rozluźnieniu upakowania komórek, a tym samym powiększeniu przestrzeni międzykomórkowych.
EN
During the heat treatment of vegetables and fruits there are varied changes in the structure of their cell wall. This article describes changes in cell structure of white cabbage, red cabbage, savoy cabbage, carrots, potatoes and apples during boiling, steaming and baking. They consisted of thickening of cell walls, loosening of cellular packing, and thus enlargement of intercellular spaces.
3
Content available remote Analiza termiczna w badaniach materiałów biologicznych
72%
PL
Metody analizy termicznej (TG/DTA/DSC) zintegrowane ze spektometrią masową (MS) są użytecznym narzędziem dla badań fizycznych i chemicznych właściwości materiału, analizy procesu jego termicznej degradacji oraz kontroli gazowych produktów rozkładu. Metody TG/DTA/DSC/MS mogą być stosowane w optymalizacji procesów technologicznych materiałów pochodzenia biologicznego, np. procesu pyrolizy oraz do selekcji odmian roślin uprawnych odpornych na niekorzystne warunki środowiska.
EN
Thermal analysis methods (TG/DTA/DSC) combined with mass spectrometry (MS) are a useful tool to study the physical and chemical properties of material, to analyze its thermal degradation and to control the gaseous products of degradation process. TG/DTA/DSC/MS methods can be applied to optimize technological processes of biological materials e.g. wood pyrolysis events, and to selection of crop plants resistant to unfavourable environmental conditions.
EN
The fundamental understanding of fibers, because of their polymeric nature, helps to improve the properties of the final product. This study presents an approach to examine the morphology, anatomy, cell wall architecture and distribution of lignin from pineapple leaf fiber by light microscopy, scanning electron microscopy with energy dispersive X-ray, transmission electron microscopy and Raman spectroscopy. Light microscopy and scanning electron microscopy revealed that the vascular bundle was randomly distributed across the transverse section of the pineapple leaf consisting of sclerenchyma, vessel, phloem and parenchyma cells. The fiber surface was covered with a rough hydrophobic layer composed of cutin, lignin, silica, waxes and a mixture of other cell wall materials. TEM investigations revealed the nanocomposite structure of the cell wall that were composed of typical primary and secondary cell wall layers. The topochemical distribution of lignin confirmed that the concentration of lignin at the cell corners was higher compared to compound middle lamella and secondary walls. This study helps to understand the fundamentals of the pineapple leaf fiber and can also help in the design of improved bio-based materials.
PL
Omówiono podstawowe badania włókien liści ananasa przeprowadzone metodami: mikroskopii świetlnej, skaningowej mikroskopii elektronowej z rozpraszaniem energii promieniowania rentgenowskiego, transmisyjnej mikroskopii elektronowej oraz spektroskopii Ramana. Badania obejmowały morfologię, architekturę komórki, oraz zawartość i rozkład ligniny w liściu. Mikroskopia świetlna i skaningowa mikroskopia elektronowa wykazały, że wiązki naczyniowe są losowo rozłożone w przekroju poprzecznym liścia ananasa i składają się z komórek sklerenchymii, naczyń łyka i komórek miąższu. Powierzchnię włókien pokrywa rogowa warstwa hydrofobowa, złożona z ligniny, krzemionki, wosków i mieszaniny innych materiałów ścianek komórkowych. Badania potwierdziły nanokompozytową strukturę ściany komórkowej, którą stanowią typowe warstwy ścian komórkowych pierwotnych i wtórnych. Stężenie ligniny w narożach komórek było większe niż w środku lameli i ścianie wtórnej. Przeprowadzone badania umożliwiają zrozumienie budowy i wynikających z niej właściwości włókien liści ananasa i ułatwiają projektowanie polimerowych biokompozytów z udziałem takich włókien.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.