Creotech Instruments is advancing a game-changing sCMOS camera series. The Final Prototype Model of an astronomical camera for Space Surveillance and Tracking (SST) is in the test campaign phase. Designed for SST, NEO, and debris detection, its adaptable platform suits quantum tech and biological microscopy. Edge computing sets it apart, leveraging FPGA-based SoC for real-time processing and Linux-based pre-processing. Operating autonomously, it supports on-camera ML algorithms, revolutionizing astronomy. Data pre-processing, like frame stacking, reduces data load. This paper introduces the camera's concept, architecture, and prototype test results, emphasizing specific use cases and future product line development.
The ever-growing deluge of astronomical data challenges traditional server-based processing, hindering real-time analysis and scientific discovery. This paper proposes a novel approach: edge computing directly on an sCMOS camera using a System-on-Chip (SoC) architecture currently developed at Creotech Instruments. We present a custom-designed camera equipped with an FPGA-based SoC, enabling on-board pre-processing and feature extraction of astronomical images. This significantly reduces data transmission, minimizes latency, and empowers real-time decision-making for critical observations. We showcase the camera's capabilities through real-world scenarios, demonstrating its usability in astronomy.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.