Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 16

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
Although resiniferatoxin (RTX) becomes more often used in experimental therapies of sensory system disorders, so far there is no data concerning the influence of RTX on the chemical coding of neurons in dorsal root ganglia (DRG) supplying the urinary bladder in the pig, an animal species considered as a reliable animal model for investigation dealing with human lower urinary tract disorders. Retrograde tracer Fast Blue (FB) was injected into the wall of the right half of the urinary bladder in six juvenile female pigs, and three weeks later, bladder instillation of RTX (500 nmol per animal) was carried out in all the animals. After a week, DRGs were harvested from all the pigs and the neurochemical characterization of FB+ neurons was performed using routine single-immunofluorescence labeling technique on 10-μm-thick cryostat sections. RTX instillation resulted in a distinct decrease in the numbers of FB+ cells containing calcitonin gene-related peptide (CGRP), nitric oxide synthase (NOS), somatostatin (SOM) and calbindin (CB) when compared with those found in the healthy animals (18% vs. 36%, 1% vs. 6%, 0.8% vs. 4% and 0.5% vs. 3%, respectively), and an increase in the number of pituitary adenylate cyclase-activating polypeptide (PACAP)- and galanin (GAL)-immunoreactive (IR) nerve cells (51% vs. 26% and 47% vs. 6.5%). The results obtained suggest that RTX could be taken into consideration when the neuroactive agents are planned to be used in experimental therapies of selected neurogenic bladder illnesses.
EN
Conantokin G (CTG), isolated from the venom of the marine cone snail Conus geographus, is an antagonist of N-methyl-d-aspartate receptors (NMDARs), the activation of which, especially those located on the central afferent terminals and dorsal horn neurons, leads to hypersensitivity and pain. Thus, CTG blocking of NMDARs, has an antinociceptive effect, particularly in the case of neurogenic pain treatment. As many urinary bladder disorders are caused by hyperactivity of sensory bladder innervation, it seems useful to estimate the influence of CTG on the plasticity of sensory neurons supplying the organ. Retrograde tracer Fast Blue (FB) was injected into the urinary bladder wall of six juvenile female pigs. Three weeks later, intramural bladder injections of CTG (120 μg per animal) were carried out in all animals. After a week, dorsal root ganglia of interest were harvested from all animals and neurochemical characterization of FB+ neurons was performed using a routine double-immunofluorescence labeling technique on 10-μm-thick cryostat sections. CTG injections led to a significant decrease in the number of FB+ neurons containing substance P (SP), pituitary adenylate cyclase activating polypeptide (PACAP), somatostatin (SOM), calbindin (CB) and nitric oxide synthase (NOS) when compared with healthy animals (20% vs. 45%, 13% vs. 26%, 1.3% vs. 3%, 1.2 vs. 4% and 0.9% vs. 6% respectively) and to an increase in the number of cells immunolabelled for galanin (GAL, 39% vs. 6.5%). These data demonstrated that CTG changed the chemical coding of bladder sensory neurons, thus indicating that CTG could eventually be used in the therapy of selected neurogenic bladder illnesses.
EN
Botulinum toxin (BTX) belongs to a family of neurotoxins which strongly influence the function of autonomic neurons supplying the urinary bladder. Accordingly, BTX has been used as an effective drug in experimental therapies of a range of neurogenic bladder disorders. However, there is no detailed information dealing with the influence of BTX on the morphological and chemical properties of nerve fibres supplying the urinary bladder wall. Therefore, the present study investigated, using double-labeling immunohistochemistry, the distribution, relative frequency and chemical coding of cholinergic and noradrenergic nerve fibers supplying the wall of the urinary bladder in normal female pigs (n=6) and in the pigs (n=6) after intravesical BTX injections. In the pigs injected with BTX, the number of adrenergic (DβH-positive) nerve fibers distributed in the bladder wall (urothelium, submucosa and muscle coat) was distinctly higher while the number of cholinergic (VAChT-positive) nerve terminals was lower than that found in the control animals. Moreover, the injections of BTX resulted in some changes dealing with the chemical coding of the adrenergic nerve fibers. In contrast to the normal pigs, in BTX injected animals the number of DβH/NPY- or DβH/CGRP-positive axons was higher in the muscle coat, and some fibres distributed in the urothelium and submucosa expressed immunoreactivity to CGRP. The results obtained suggest that the therapeutic effects of BTX on the urinary bladder might be dependent on changes in the distribution and chemical coding of nerve fibers supplying this organ.
EN
The aim of the study was to establish whether the dorsal root ganglion neurons supplying the porcine CaMG contain SP and/or CGRP and, additionally, which changes in the expression pattern of these peptides may be induced by a mechanical injury applied to the processes of the above neurons. The study was carried out on consecutive frozen serial sections of DRG taken from 12 eight-week old pigs, in which the neuronal tracer Fast Blue (FB) had been injected three weeks previously into the right CaMG. Six animals were then randomly chosen for ipsilateral ganglionectomy. Eventual changes in the chemical phenotypes of the injured cells were studied a week later using routine double-immunofluorescence labeling. FB+ neurons contained SP and CGRP (32% and 42%, respectively). The vast majority of SP- and CGRP-IR afferent cells belonged to the class of medium-sized (64% and 59%, respectively) and small neurons (32% and 37%, respectively). A co-localization of SP and CGRP was observed in 22% of FB+ neurons. The resection of CaMG resulted in a dramatic increase in the number of FB+ cells containing SP (55%) and a statistically significant decrease in the number of CGRP-IR neurons associated with CaMG (29%). These results suggest that sensory neurons associated with porcine CaMG contain SP and CGRP and that a re-section of CaMG is able to induce profound changes in the expression pattern of the studied peptides, implying deep mechanical injury-induced adaptative changes in the studied afferent neurons.
EN
The present in vitro study investigated the influence of doxazosin on the contractility of the urinary bladder in female pigs with experimentally induced cystitis. Fifteen juvenile female piglets (18-20 kg body weight) were randomly assigned into three groups (n=5 animals each): i) control (clinically healthy animals, without doxazosin treatment), ii) animals with induced inflammation of the urinary bladder, but without doxazosin treatment (experimental group I) and iii) animals with inflamed bladder, treated orally with doxazosin (0.1 mg/kg body weight for 30 days; experimental group II). Thereafter, the pigs were sacrificed and strips of the bladder trigone were suspended in organ baths. The tension and amplitude of the smooth muscles was measured before and after exposition to 5-hydroxytryptamine (5-HT; 10⁻⁶-10⁻⁴ M), acetylocholine (ACh; 10⁻⁵-10⁻³ M) and norepinephrine (NE; 10⁻⁹-10⁻⁷ M). 5-HT caused an increase in the tension of contractions in all the groups and the amplitude in the experimental groups, however, the effect was higher in the experimental group I than in group II as compared to that found in the pre-treatment period. ACh caused an increase in the tension in the control group and a decrease in the amplitude in both experimental groups; these changes significantly differed between the control and doxazosin-treated group. NE caused a decrease in the tension in both experimental groups and amplitude in all the groups, however, the effect was most strongly expressed in doxazosine-treated group. The present study has revealed that long-term administration of doxazosin causes a desensitization of the detrusor smooth muscle to in vitro applied mediators in the autonomic nervous system.
EN
The objective of this study was to investigate the distribution and chemical coding patterns of nerve fibres supplying the canine urinary bladder before and after botulinum toxin (BTX) injection. The experimental material comprised six bitches. The injection of the BTX into the urinary bladder wall in dogs clearly altered the bladder's innervation pattern, indicating that BTX affects the components of both the sensory and parasympathetic nervous systems, and that degenerative changes are accompanied by restorative processes.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.