The iron oxide ion exchanger Ferrix A33E was successfully modified with cerium(III) ions to obtain Ferrix A33E-Ce(III) providing much better sorption properties in relation to the As(V) species. The new material has been characterized using a number of techniques including scanning electron microscopy SEM, nitrogen adsorption/desorption isotherms, Fourier transform infrared spectroscopy FTIR and X-ray photoelectron spectroscopy XPS. At optimal pH 6 the main mechanism of arsenate adsorption on A33E-Ce(III) was electrostatic attraction and formation of monodentate and bidentate surface complexes. The process was exothermic and spontaneous. Unlike the unmodified ion exchanger, A33E-Ce(III) could completely remove arsenic from the arsenate solution at a concentration of 50 mg/dm3 in 60 minutes. Furthermore, the maximum sorption capacity for As(V) was determined to be 60.41 mg/g which almost doubled after modification with cerium(III) ions. It is also worth noting that even after three cycles of sorption/desorption A33E-Ce(III) exhibited a higher sorption capacity than unmodified A33E before the arsenate adsorption. It can be concluded that modifying the sorbent with a small amount of cerium(III) ions boosts its sorption properties significantly, improves effectiveness of water purification and reduces the overall operation cost
The article describes the history, origin and development of inorganic chemistry at the Marie Curie-Skłodowska University in Lublin. The profiles of the first heads of the Department of Inorganic Chemistry and the history, research topics and didactic and organisational achievements of the unit are presented.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.