Hydraulic cylinders play a vital role in the energy output (PTO) system of an oscillating float-type wave Energy converter, whose function is to convert the mechanical energy captured by the float from the waves into hydraulic energy. The performance of the hydraulic cylinder determines the conversion efficiency of mechanical energy to hydraulic energy in the system; therefore, it is necessary to study the working mechanism of the hydraulic cylinder. This paper takes a self-developed oscillating float-type wave energy converter as the research object, and studies the working mechanism of its hydraulic cylinder, and uses the linear analysis method to derive the critical self-excited vibration curve of the hydraulic cylinder. In addition, the effects of the external load, hydraulic cylinder load mass, stroke length, spring stiffness and piston area on the performance of the hydraulic cylinder were studied by AMESim simulation software. According to the simulation results, a physical model of the hydraulic cylinder is established. Finally, the physical model is tested in a hydrodynamic pool. The test results show that the hydraulic cylinder can stably and efficiently convert mechanical energy into hydraulic energy even under small waves, thus verifying the rationality of the hydraulic cylinder design.
The oscillating buoy wave energy converter (OBWEC) captures wave energy through the undulating movement of the buoy in the waves. In the process of capturing wave energy, the hydrodynamic performance of the buoy plays an important role. This paper designed the “Haida No. 1” OBWEC, in which the buoy adopts a form of swinging motion. In order to further improve the hydrodynamic performance of the buoy, a 2D numerical wave tank (NWT) model is established using ADINA software based on the working principle of the device. According to the motion equation of the buoy in the waves, the influence of the buoy shape, arm length, tilt angle, buoy draft, buoy width, wave height and Power Take-off (PTO) damping on the hydrodynamic performance of the buoy is studied. Finally, a series of physical experiments are performed on the device in a laboratory pool. The experimental results verify the consistency of the numerical results. The research results indicate that the energy conversion efficiency of the device can be improved by optimizing the hydrodynamic performance of the buoy. However, the absorption efficiency of a single buoy for wave energy is limited, so it is very difficult to achieve full absorption of wave energy.
Floating offshore wind turbines are easily affected by typhoons in the deep sea, which may cause serious damage to their structure. Therefore, it is necessary to study further the dynamic response of wind turbine structures under typhoons. This paper took the 5MW floating offshore wind turbine developed by the National Renewable Energy Laboratory (NREL) as the research object. Based on the motion theory of platforms in waves, a physical model with a scale ratio of 1:120 was established, and a hydraulic cradle was used to simulate the effect of waves on the turbines. The dynamic response characteristics of offshore wind turbines under typhoons are systematically studied. The research results clarified that the turbine structure is mainly affected by wave loads under typhoons, and its motion response reaches its maximum value under the action of extreme wave loads. The research results of this paper can provide reference value for the design of offshore wind turbine structures under typhoons.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.