Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
In this study, a new chemically modified cellulose polymer-capped ZnO nanopowder prepared by hydrothermal method using chemically modified cellulose polymer as capping agent was successfully reported. The structural characteristics of CMC-capped ZnO nanopowder was reported by FTIR, XRD, SEM and EDX studies. XRD results revealed crystallographic properties like crystal composition, phase purity and crystallite size of the prepared CMC-capped ZnO nanopowder and average size calculated by Debye Scherrer formula as 14.66 nm. EDX studies revealed that the presence of elemental compositions of capping agent in the nanopowder samples. The optical characterization of the CMC-capped ZnO nanopowder was studied using UV absorption (λ max = 303 nm) and PL spectroscopy (λ ex = 295 nm). The average crystal diameter and grain size were calculated by effective mass approximation formula and compared with XRD findings that agreed well and verified CMC capped ZnO with particle size of 193 nm. Thus, the promising optical characteristics shown by the synthesized CMC capped ZnO nanopowders exposes its potential usage in bio-medical fields.
EN
Purpose: The purpose of the study is to develop an augmented algorithm with optimised energy and improvised synchronisation to assist the knee exoskeleton design. This enhanced algorithm is used to estimate the accurate left and right movement signals from the brain and accordingly moves the lower-limb exoskeleton with the help of motors. Design/methodology/approach: An optimised deep learning algorithm is developed to differentiate the right and left leg movements from the acquired brain signals. The obtained test signals are then compared with the signals obtained from the conventional algorithm to find the accuracy of the algorithm. Findings: The obtained average accuracy rate of about 63% illustrates the improvised differentiation in identifying the right and left leg movement. Research limitations/implications: The future work involves the comparative study of the proposed algorithm with other classification technologies to extract more reliable results. A comparative analysis of the replaceable and rechargeable battery will be done in the future study to exhibit the effectiveness of the proposed model. Originality/value: This study involves the extended study of five frequency regions namely alpha, beta, gamma, delta and theta, to handle the real-time EEG signal processing exoskeleton, model.
EN
Aegle marmelos Correa (Bael tree) is a medicinal fruit tree, widely used for healing purposes in various systems of medicines. Coumarins and alkaloids present in various parts of bael tree including roots and fruit pulp are the primary active constituents implicated for its biological activities. An efficient liquid chromatography–electrospray ionization—tandem mass spectrometry (LC—ESI—MS/MS) method was developed for identification and simultaneous determination of four coumarin derivatives, namely, umbelliferone, psoralene, marmin, and imperatorin, and an alkaloid, skimmianine, in root and stem bark of A. marmelos. The chromatographic separation of analytes was performed on Altima C18 (50 × 4.6 mm, 3 μm) column using methanol and 0.1% acetic acid in water (54:46, v/v) as the mobile phase under isocratic conditions. The LC–MS/MS parameters were optimized in the positive ionization mode using electrospray ionization source. The quantification of the analytes was performed using multiple reaction monitoring (MRM) transitions, umbelliferone (m/z 163.1 → 107.1), psoralene (m/z 187.2 → 131.1), marmin (m/z 333.5 → 163.2), imperatorin (m/z 271.1 → 203.1), and skimmianine (m/z 260.1 → 227.0). The extraction method was standardized for optimum yield of coumarin derivatives and the alkaloid in different extraction solvents. Higher yield of the analytes was found in methanolic extracts in comparisons to petroleum ether, chloroform, ethyl acetate, ethanol, and water. The method was validated for linear range, intra- and inter-batch precision and accuracy. The distribution of coumarin derivatives and an alkaloid was found to vary significantly in different plant samples, and their concentration was much higher in roots as compared to stem bark.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.