For an arbitrary topological group G any compact G-dynamical system (G,X) can be linearly G-represented as a weak*-compact subset of a dual Banach space V*. As was shown in [45] the Banach space V can be chosen to be reflexive iff the metric system (G,X) is weakly almost periodic (WAP). In the present paper we study the wider class of compact G-systems which can be linearly represented as a weak*-compact subset of a dual Banach space with the Radon-Nikodým property. We call such a system a Radon-Nikodým (RN) system. One of our main results is to show that for metrizable compact G-systems the three classes: RN, HNS (hereditarily non-sensitive) and HAE (hereditarily almost equicontinuous) coincide. We investigate these classes and their relation to previously studied classes of G-systems such as WAP and LE (locally equicontinuous). We show that the Glasner-Weiss examples of recurrent-transitive locally equicontinuous but not weakly almost periodic cascades are actually RN. Using fragmentability and Namioka's theorem we give an enveloping semigroup characterization of HNS systems and show that the enveloping semigroup E(X) of a compact metrizable HNS G-system is a separable Rosenthal compact, hence of cardinality $ ≤ 2^{ℵ₀}$. We investigate a dynamical version of the Bourgain-Fremlin-Talagrand dichotomy and a dynamical version of the Todorčević dichotomy concerning Rosenthal compacts.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
For a topological group G we introduce the algebra SUC(G) of strongly uniformly continuous functions. We show that SUC(G) contains the algebra WAP(G) of weakly almost periodic functions as well as the algebras LE(G) and Asp(G) of locally equicontinuous and Asplund functions respectively. For the Polish groups of order preserving homeomorphisms of the unit interval and of isometries of the Urysohn space of diameter 1, we show that SUC(G) is trivial. We introduce the notion of fixed point on a class P of flows (P - fpp) and study in particular groups with the SUC-fpp. We study the Roelcke algebra (= UC(G) = right and left uniformly continuous functions) and SUC compactifications of the groups S(ℕ), of permutations of a countable set, and H(C), of homeomorphisms of the Cantor set. For the first group we show that WAP(G) = SUC(G) = UC(G) and also provide a concrete description of the corresponding metrizable (in fact Cantor) semitopological semigroup compactification. For the second group, in contrast, we show that SUC(G) is properly contained in UC(G). We then deduce that for this group UC(G) does not yield a right topological semigroup compactification.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.