Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote On lower semicontinuity of multiple integrals
100%
|
|
nr 1
71-78
EN
We give a new short proof of the Morrey-Acerbi-Fusco-Marcellini Theorem on lower semicontinuity of the variational functional $\int_{Ω} F(x,u,∇u)dx$. The proofs are based on arguments from the theory of Young measures.
|
|
nr 1
43-59
EN
We study the functional $I_{f}(u)=∫_{Ω} f(u(x))dx$, where u=(u₁, ..., uₘ) and each $u_{j}$ is constant along some subspace $W_{j}$ of ℝⁿ. We show that if intersections of the $W_{j}$'s satisfy a certain condition then $I_{f}$ is weakly lower semicontinuous if and only if f is Λ-convex (see Definition 1.1 and Theorem 1.1). We also give a necessary and sufficient condition on ${W_{j}}_{j=1,...,m}$ to have the equivalence: $I_{f}$ is weakly continuous if and only if f is Λ-affine.
|
|
tom 10
|
nr 6
2033-2050
EN
We obtain Hardy type inequalities $$\int_0^\infty {M\left( {\omega \left( r \right)\left| {u\left( r \right)} \right|} \right)\rho \left( r \right)dr} \leqslant C_1 \int_0^\infty {M\left( {\left| {u\left( r \right)} \right|} \right)\rho \left( r \right)dr + C_2 \int_0^\infty {M\left( {\left| {u'\left( r \right)} \right|} \right)\rho \left( r \right)dr,} }$$ and their Orlicz-norm counterparts $$\left\| {\omega u} \right\|_{L^M (\mathbb{R}_ + ,\rho )} \leqslant \tilde C_1 \left\| u \right\|_{L^M (\mathbb{R}_ + ,\rho )} + \tilde C_2 \left\| {u'} \right\|_{L^M (\mathbb{R}_ + ,\rho )} ,$$ with an N-function M, power, power-logarithmic and power-exponential weights ω, ρ, holding on suitable dilation invariant supersets of C 0∞(ℝ+). Maximal sets of admissible functions u are described. This paper is based on authors’ earlier abstract results and applies them to particular classes of weights.
4
Content available remote Gagliardo-Nirenberg inequalities in weighted Orlicz spaces
63%
EN
We derive inequalities of Gagliardo-Nirenberg type in weighted Orlicz spaces on ℝⁿ, for maximal functions of derivatives and for the derivatives themselves. This is done by an application of pointwise interpolation inequalities obtained previously by the first author and of Muckenhoupt-Bloom-Kerman-type theorems for maximal functions.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.