The crossing number cr(G) of a graph G is the minimum number of edge crossings over all drawings of G in the plane. The main aim of the paper is to give the crossing number of the join product W4 + Pn and W4 + Cn for the wheel W4 on five vertices, where Pn and Cn are the path and the cycle on n vertices, respectively. Yue et al. conjectured that the crossing number of Wm + Cn is equal to [formula], for all m,n ≥ 3, and where the Zarankiewicz’s number[formula] is defined for n ≥ 1. Recently, this conjecture was proved for W3 + Cn by Klesc. We establish the validity of this conjecture for W4 + Cn and we also offer a new conjecture for the crossing number of the join product Wm + Pn for m ≥ 3 and n ≥ 2.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.