Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
1
Content available remote Weakly precompact subsets of L₁(μ,X)
100%
|
|
nr 1
133-143
EN
Let (Ω,Σ,μ) be a probability space, X a Banach space, and L₁(μ,X) the Banach space of Bochner integrable functions f:Ω → X. Let W = {f ∈ L₁(μ,X): for a.e. ω ∈ Ω, ||f(ω)|| ≤ 1}. In this paper we characterize the weakly precompact subsets of L₁(μ,X). We prove that a bounded subset A of L₁(μ,X) is weakly precompact if and only if A is uniformly integrable and for any sequence (fₙ) in A, there exists a sequence (gₙ) with $gₙ ∈ co{f_i: i ≥ n}$ for each n such that for a.e. ω ∈ Ω, the sequence (gₙ(ω)) is weakly Cauchy in X. We also prove that if A is a bounded subset of L₁(μ,X), then A is weakly precompact if and only if for every ϵ >0, there exist a positive integer N and a weakly precompact subset H of NW such that A ⊆ H + ϵB(0), where B(0) is the unit ball of L₁(μ,X).
2
Content available remote On Some Classes of Operators on C(K,X)
100%
|
|
tom 63
|
nr 3
261-274
EN
Suppose X and Y are Banach spaces, K is a compact Hausdorff space, Σ is the σ-algebra of Borel subsets of K, C(K,X) is the Banach space of all continuous X-valued functions (with the supremum norm), and T:C(K,X) → Y is a strongly bounded operator with representing measure m:Σ → L(X,Y). We show that if T is a strongly bounded operator and T̂:B(K,X) → Y is its extension, then T is limited if and only if its extension T̂ is limited, and that T* is completely continuous (resp. unconditionally converging) if and only if T̂* is completely continuous (resp. unconditionally converging). We prove that if K is a dispersed compact Hausdorff space and T is a strongly bounded operator, then T is limited (resp. weakly precompact, has a completely continuous adjoint, has an unconditionally converging adjoint) whenever m(A):X → Y is limited (resp. weakly precompact, has a completely continuous adjoint, has an unconditionally converging adjoint) for each A ∈ Σ.
3
Content available remote The Embeddability of c₀ in Spaces of Operators
63%
|
|
nr 3
239-256
EN
Results of Emmanuele and Drewnowski are used to study the containment of c₀ in the space $K_{w*}(X*,Y)$, as well as the complementation of the space $K_{w*}(X*,Y)$ of w*-w compact operators in the space $L_{w*}(X*,Y)$ of w*-w operators from X* to Y.
4
Content available remote The Dunford-Pettis property, the Gelfand-Phillips property, and L-sets
63%
|
|
nr 2
311-324
EN
The Dunford-Pettis property and the Gelfand-Phillips property are studied in the context of spaces of operators. The idea of L-sets is used to give a dual characterization of the Dunford-Pettis property.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.