Ten serwis zostanie wyłączony 2025-02-11.
Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 4

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
Przemysł lotniczy wymaga wysokiej jakości i dokładności wykonania wytwarzanych elementów, stąd konieczne jest zapewnienie jak najlepszej kontroli jakości. Proces inspekcji wykonanego detalu powinien przebiegać w taki sposób, aby wpływ na mierzony element był jak najmniejszy. Idealnym rozwiązaniem mogą być badania z użyciem skanerów optycznych. Jednak ze względu na długi czas pojedynczego pomiaru oraz konieczność nakładania powłoki anty refleksyjnej taki proces nie sprawdza się w produkcji. W pracy zaprezentowano koncepcję zrobotyzowanego stanowiska do pomiaru, orientacji i geometrii łopatki turbiny silnika lotniczego. Stacja składa się z robota przemysłowego wyposażonego w chwytak oraz stanowiska pomiarowego zaopatrzonego w laserowe czujniki odległości. Zmierzone wielkości zostają przesłane z modułu pomiarowego do kontrolera robota za pomocą protokołu transmisji danych. Przesłane dane mogą zostać wyświetlone na panelu operatorskim lub wykorzystane do przygotowania raportu. W porównaniu z pomiarem z wykorzystaniem skanera optycznego cały proces zajmuje znacznie mniej czasu. Na podstawie przygotowanych modeli CAD oraz wykorzystując notację Denavita-Hartenberga, wyznaczone zostały pozycja i orientacja łopatki w odniesieniu do układów współrzędnych robota oraz stanowiska pomiarowego.
EN
The aerospace industry requires high quality and precision of the manufactured parts thus it is necessary to ensure the best possible quality control. The inspection process of the workpiece should be done in such a way that the impact on the measured element is as small as possible. The ideal solution can be research using optical scanners. However, due to the long-time of a single measurement and the need to apply an anti-reflective coating, such process does not work in production. The paper presents the concept of a robotic station for measuring, orientation and geometry of an aircraft engine turbine blade. The station consists of an industrial robot equipped with a gripper and a measuring station equipped with laser sensors of distance. The measured quantities are transferred from the measurement module to the robot controller by means of a data transmission protocol. The transferred data can be displayed on the operator panel or used to prepare a report from a measurement. In comparison with the optical scanner, the entire process takes much less time. Based on the prepared CAD models and using the Denavit-Hartenberg notation, the positions and orientation of the blade were determined in relation to the robot coordinate systems and the measurement position.
PL
Artykuł dotyczy charakterystyki procesu projektowania, programowania oraz budowy zrobotyzowanego stanowiska do procesu obróbki skrawaniem elementów odlewanych. W artykule omówiono sposoby projektowania, opracowany proces adaptacji narzędzia oraz wykonane symulacje. Scharakteryzowany został proces programowania z wykorzystaniem podejścia hybrydowego. Pokazano proces budowy oraz testów wykonanych na stanowisku laboratoryjnym oraz w warunkach przemysłowych.
EN
The article concerns the characteristics of the design, programming and construction of a robotic station for the machining of cast elements. The article discusses the design methods, the developed tool adaptation process and the simulations performed. The programming process was characterized by a hybrid approach. The construction process and tests performed on a laboratory stand and in industrial conditions are shown.
EN
The article presents the issue of calibration and verification of an original module, which is a part of the robotic turbojet engines elements processing station. The task of the module is to measure turbojet engine compressor blades geometric parameters. These type of devices are used in the automotive and the machine industry, but here we present their application in the aviation industry. The article presents the idea of the module, operation algorithm and communication structure with elements of a robot station. The module uses Keyence GT2-A32 contact sensors. The presented information has an application nature. Functioning of the module and the developed algorithm has been tested, the obtained results are satisfactory and ensure sufficient process accuracy. Other station elements include a robot with force control, elements connected to grinding such as electrospindles, and security systems.
PL
W praktyce inżynierskiej dotyczącej wykonywania zrobotyzowanych pomiarów z wykorzystaniem skanera 2D trudnością jest precyzyjne szybkie i łatwe określenie punktu TCP (ang. Tool Center Point), ponieważ nie istnieje in jako obiekt fizyczny. W artykule zaproponowano algorytm wyznaczania współrzędnych punktu TCP. Polega on na możliwości wykorzystania elementu stożkowego np. freza o nieznanej geometrii. Dotychczas spotykane w literaturze algorytmy bazowały na kuli o znacznych rozmiarach. Zaprezentowane rozwiązanie zostało zasymulowane w oprogramowaniu RobotStudio, natomiast obliczenia wykonano w oprogramowaniu Maple. Dodatkowo poprawność prezentowanych rozwiązań została zweryfikowana na obiekcie rzeczywistym, robocie IRB 2400 wyposażonym w skaner 2D firmy Keyence.
EN
In the engineering practice of performing robotic measurements with a 2D scanner, a major difficulty is to quickly and easily precisely define a TCP point because it does not exist as a physical object. This paper proposed an algorithm for determining the coordinates of a TCP point. It relies on the ability to use a tapered element such as a milling tool with unknow geometry. The algorithms found in the literature so far have been based on a sphere of known size. The presented solution was simulated in RobotStudio software, while calculations were performed in Maple software. Additionally, the correctness of the presented solutions was verified on the real object, the IRB 2400 robot Equipped with a 2D scanner from Keyence.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.