Grafen jest obecnie materiałem niezwykle popularnym zarówno w środowisku naukowym, jak i w mediach. Jego unikatowe właściwości pozwalają myśleć o nim jako o następcy krzemu w elektronice. Polska ma swój wkład w badaniach tego materiału, między innymi poprzez opracowanie nowatorskiej techniki wzrostu grafenu na SiC- polegającej na osadzaniu warstw węglowych z propanu. Spektroskopia ramanowska jest uznaną i nieniszczącą techniką badań struktur węglowych, w tym grafenu. W sierpniu 2012 r. w ITME został zakupiony spektrometr ramanowski optymalizowany do badań grafenu. W artykule zostaną przedstawione podstawy spektroskopii ramanowskiej i omówione pokrótce podstawowe techniki wytwarzania grafenu. Główny nacisk został położony na przedstawienie możliwości badawczych przy użyciu spektroskopii ramanowskiej.
EN
Graphene is a material that has recently become very popular with both the representatives of the scientific world and the media. The unique properties of graphene make it a successor to silicon in a new generation of electronics. Poland has contributed to the study of this material, among others by developing an innovative technique of graphene growth on SiC layers by chemical vapor deposition. Raman spectroscopy is a fast and non-destructive technique to analyze and characterize graphene. In August 2012 a new Raman spectrometer dedicated to the study of graphene was bought. In this article the basics of Raman spectroscopy and the graphene production technique are presented. However, the main goal is to show the capabilities and basic techniques of Raman spectroscopy in relation to graphene characterization and analysis.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Three different types of samples of InP nanowires, i.e. undoped, doped with Si and doped with Te, were grown and measured using SEM and Raman spectroscopy. Scanning Electron Microscope (SEM) images showed differences in the length, homogeneity and curvature of the nanowires. The most homogenous wires, grown most perpendicular to the surface, were those Si doped. They were also the shortest. Raman spectroscopy showed that the nanowires doped with Si had the lowest Full Width at Half Maximum (FWHM) TO band, which suggests the highest crystal quality of these wires. For the wires doped with Te, which were the most inhomogeneous, a low energy acoustic band was also observed, which suggests the lowest crystal quality of these structures.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.