Let F be a commutative ring with unit. In this paper, for an associative F-algebra A we study some properties forced by finite length or DCC condition on F-submodules of A that are subalgebras with zero multiplication. Such conditions were considered earlier when F was either a field or the ring of rational integers. In the final section, we consider algebras with maximal commutative subalgebras of finite length as F-modules and obtain some results parallel to those known for ACC condition or finite generation.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
Let A ⊆ ℚ be any subring. We extend our earlier results on unit groups of the standard quaternion algebra H(A) to units of certain rings of generalized quaternions H(A,a,b) = ((-a,-b)/A), where a,b ∈ A. Next we show that there is an algebra embedding of the ring H(A,a,b) into the algebra of standard Cayley numbers over A. Using this embedding we answer a question asked in the first part of this paper.