Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 11

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
PL
W artykule przedstawiono sposób oceny rozkładu temperatury w produkcyjnym otworze geotermalnym w sytuacji dopływu mieszaniny wody złożowej (solanki) oraz – planowanego jako główny nośnik energii cieplnej – dwutlenku węgla w zakresie nadkrytycznych parametrów ciśnienia i temperatury. We wstępie podkreślono znaczenie ograniczenia emisji dwutlenku węgla do atmosfery, omówiono krótko charakterystykę przemian fazowych CO2 oraz przedstawiono sposób jego alternatywnego zagospodarowania. Zyskującym w ostatnich latach na popularności sposobem ograniczenia szkodliwego oddziaływania dwutlenku węgla jest jego wykorzystanie jako medium roboczego przy pozyskiwaniu energii geotermalnej, tj. wprowadzenie go do obiegu w układzie otworów (zatłaczającego i produkcyjnego) do wyeksploatowanych złóż węglowodorów (ropy lub gazu). W pracy zobrazowano zasady pracy takich otworów, przedstawiono korzyści wykorzystania w systemach geotermalnych dwutlenku węgla jako płynu roboczego oraz określono warunki niezbędne do efektywnego działania omawianego układu. Jednym z elementów publikacji jest bilans wymiany ciepła pomiędzy płynem przemieszczającym się ze złoża na powierzchnię a górotworem. W ramach rozwiązania problemu zaprezentowano model bilansowy przyjętych i oddanych ilości ciepła przez mieszaninę solanki i dwutlenku węgla w otworze geotermalnym. Przedstawione zostały ponadto procedury określania parametrów CO2 w funkcji ciśnienia i temperatury w odwiercie, w tym lepkość, gęstość i współczynnik przewodzenia ciepła w mieszaninie. Podano również sposób obliczania parametrów koniecznych do określenia współczynnika przejmowania ciepła pomiędzy cyrkulującym płynem a ścianą rury okładzinowej. Na potrzeby obliczeń założono, że temperatura na ścianie odwiertu zmienia się liniowo wraz z głębokością, tzn. zgodnie z tak zwanym gradientem geotermicznym. Podano też zależność umożliwiającą określenie ilości ciepła przekazywanego od górotworu do przepływającej mieszaniny solanki i CO2. Jako element końcowy przedstawiono zależność wielkości temperatury płynu wypływającego z otworu od jego głębokości całkowitej, przyjętego natężenia przepływu i zmiennych proporcji CO2 i solanki w składzie mieszaniny. Wszystkie obliczenia przeprowadzono z uwzględnieniem właściwości CO2 w zakresie parametrów nadkrytycznych ciśnienia i temperatury, wzięto w nich również pod uwagę stopień izolacji cieplnej odwiertu. Przedstawiona została procedura obliczeń, a wyniki przykładu obliczeniowego zestawiono w formie tabelarycznej i graficznej. Na ich podstawie podjęto próbę wskazania, który z rozpatrywanych parametrów wpływa najsilniej na końcową wielkość temperatury wypływającego z odwiertu płynu.
EN
The article presents a method of evaluating temperature distribution in a production geothermal well in case of inflow of a mixture of formation water (brine) and supercritical carbon dioxide, as the main carrier of thermal energy. In introduction the problem of reducing the carbon dioxide emissions to atmosphere and characteristics of CO2 phase transformations are briefly discussed. Provided are alternative methods of utilization of CO2 including its sequestration by injection to the depleted oil and gas reservoirs using the injection and production wells working in tandem. As the main part of the article heat balance is constructed describing heat exchange between fluid flowing up from reservoir and the rock mass. The heat balance is used to find the relation between temperature of brine/CO2 mixture which is out-flowing of the geothermal well. Procedures for determination of CO2 parameters are provided (viscosity, density and thermal conductivity in the mixture) as function of pressure and temperature in the well. The method for calculation of these parameters is presented, which is used to determine heat transfer coefficient between circulating fluid and wall of casing. For the purposes of the calculations, it was assumed that the temperature on the borehole changes linearly with the depth, i.e. in accordance with geothermal gradient. Moreover, the dependence enabling determination of the amount of heat transferred from the rock mass to the flowing mixture of brine and CO2 was given. Carbon dioxide is assumed to be in the supercritical range of temperature and pressure. The results are presented as the relation between temperature of the mixture at various depths of well and for various flow rates and various compositions of the mixture. Due account is given to the impact of the wellbore thermal insulation on temperature and pressure-dependent parameters of carbon dioxide flow in the well. The parameters which govern temperature of brine and CO2 mixture out- flowing of production well are specified. The results are also presented in a graphical and tabular form.
PL
Artykuł poświęcony jest zagadnieniu zmian składu i parametrów energetycznych mieszanin gazów węglowodorowych magazynowanych w komorze wykonanej w soli. W trakcie eksploatacji komory występuje okresowe dotłaczanie oraz pobór porcji gazów o odmiennych parametrach energetycznych i odmiennym składzie, różniącym się od składu gazu obecnego aktualnie w komorze. Również objętość poszczególnych porcji gazu dotłaczanego lub pobieranego z komory jest za każdym razem inna, ponieważ wynika ona z bieżącego zapotrzebowania na gaz, który na ogół jest pobierany w miesiącach zimowych, a dotłaczany do komory w lecie. Taka sytuacja powoduje, że skład mieszaniny w komorze solnej ulega ciągłym zmianom, a zatem zmieniają się również parametry energetyczne mieszaniny. W załączonym algorytmie obliczeniowym uwzględniono obecność w mieszaninie składników niepalnych i wodoru, które wpływają zarówno na parametry energetyczne, jak i na temperaturę spalania mieszaniny. W każdym momencie eksploatacji komory obliczana jest aktualna zawartość procentowa poszczególnych składników mieszaniny, temperatura jej spalania, wartość opałowa, ciepło spalania oraz liczba Wobbego, która również ulega zmianom w funkcji składu mieszaniny. Z powodu braku danych przemysłowych obliczenia według opracowanego algorytmu obliczeniowego wykonano, przyjmując dane hipotetyczne dotyczące składu początkowego mieszaniny gazów w komorze oraz składu porcji mieszaniny gazów zatłaczanych sukcesywnie do komory. Wyniki obliczeń zaprezentowano w formie tabelarycznej i graficznej. Sporządzone wykresy pozwalają wizualnie prześledzić zmiany zawartości poszczególnych składników mieszaniny oraz wszystkie pozostałe obliczane parametry, to jest ciepło spalania, wartość opałową i temperaturę spalania. Zmiany wymienionych parametrów pokazano na wykresach w funkcji czasu eksploatacji komory lub w funkcji ilości gazu w komorze.
EN
The authors discussed the problems related to fluctuation of the gas mixture composition during exploitation of gas store caverns which are leached in the salt sediments or in the salt dome. Periodical injection or withdrawal of the new portions of gas mixtures with different composition and different volume causes the changes in gas mixture content and energetic parameters when compared to initial values. The enclosed calculation algorithm allows the Operator to calculate the actual composition of the gas mixture as well as the gas parameters at every moment of cavern exploitation including temperature of flame, heat of combustion, calorific value, content of individual components and the Wobbe number. The changes of above mentioned parameters are caused by fluctuations of composition of the gas portions injected into gas caverns during subsequent injection cycles. The most frequently occurring inflammable components of a gas mixture are included in calculations and their impact on energetic parameters is demonstrated. The problem of gas mixture flammability is discussed but calculations are not included here because of its minor technical importance for the situation being analyzed. Because no real-world data were available to us, the hypothetical data were used to demonstrate the capabilities of the calculation algorithm. The results are presented as figures and in a graphical form. The presented curves allows for visual examination of changes of mixture composition as well as changes of calorific value, heat of combustion, temperature of flame and the Wobbe number. All parameters specified above are presented versus time or versus volume of gas mixture stored in the cavern.
|
|
tom R. 77, nr 1
26--32
PL
W artykule omówiono zagadnienie spalania gazu ziemnego (będącego mieszaniną gazów) przy użyciu flary w przypadku dużej zawartości w nim składników niepalnych, takich jak azot, hel, dwutlenek węgla itp. Spalanie takich mieszanin we flarze wymaga na ogół wzbogacenia składu mieszaniny przez doprowadzenie do strumienia gazów kierowanych do spalenia dodatkowego strumienia gazów palnych, tak aby skład mieszaniny mieścił się powyżej dolnej granicy palności/wybuchowości. W Polsce do gazów wymagających takiego wzbogacania należy m.in. gaz ze złoża Cychry oraz Sulęcin, w którym zawartość składników niepalnych (azotu) wynosi powyżej 90%, a udział składników palnych jest niski. Zapewnienie całkowitego spalania mieszaniny gazów jest szczególnie istotne w przypadku obecności w niej siarkowodoru, który jest gazem trującym i który należy bezwzględnie zutylizować. Wzbogacenie mieszaniny gazów odbywa się przez wprowadzenie do strumienia gazów kierowanych do flary dodatkowych ilości gazu, na ogół propanu-butanu lub innych gazów palnych. W artykule przedstawiono typową konstrukcję urządzenia do spalania mieszanin gazów stosowanego w przemyśle petrochemicznym i naftowym oraz omówiono przeznaczenie typowych części składowych instalacji. Podano zależność empiryczną pozwalającą na ustalenie palności mieszaniny gazów o podanym składzie zawierającej gazy palne i niepalne. Przedstawiono również algorytm obliczeniowy pozwalający na podanie natężenia przepływu gazu propan-butan, który należy doprowadzić do strumienia gazów, aby mieszanina mogła być efektywnie spalona we flarze. Zaprezentowano wyniki obliczeń dla gazów z dużą zawartością azotu, pochodzących z czterech polskich złóż. Przedstawiony sposób ustalania palności mieszanin gazów lub jej braku oraz natężenia przepływu gazów propan-butan wymaganego do całkowitego spalania tej mieszaniny oparty jest na zależnościach empirycznych i może być pomocny przy planowaniu wspomaganego spalania gazu ziemnego (nienadającego się do zagospodarowania) przy użyciu flary w celu jego utylizacji.
EN
The paper discusses the problems related to the burning of gas mixtures containing flammable and non-flammable gases using a flare. Before being burned, such a gas mixture must be “enriched” with other flammable gases before it can be directed to the flare. In the case of some Polish gas reservoirs such as Cychry or Sulęcin, the composition of the gas mixture doesn’t make it possible to burn it using the flare because the content of inflammable components is too high and the gas mixture is inflammable. The gas from the reservoirs mentioned above contains above 90 percent of nitrogen and small percentages of flammable components. Sometimes, besides nitrogen, the gas mixture contains other inflammable gases like carbon dioxide, helium, and oxygen. Usually, the propane/butane is used for that purpose. The possibility of burning the gas mixture using the flare is particularly important if the toxic gases are present in the mixture – hydrogen sulfide in particular. The propane/butane gases are added to the stream of gas mixture meant for burning using a special appliance. The typical arrangement of a gas-burning installation (i.e. the flare) is shown and the destination of its components is discussed. The empirical formula is provided which allows us to recognize if the gas mixture is flammable or not. The composition of the gas mixture must be known to calculate the propane/butane flow rate, including percentages of flammable and inflammable components. The algorithm constructed for calculating the propane/butane flow rate is presented, which must be maintained to assure the flammability of the gas mixture destined for burning using the flare. The results of the calculations for four gas mixtures from the Polish gas reservoirs are provided. The presented method of determining the flammability of gas mixtures (or its inability to be burned) and the flow rate of the propane/butane mixture required for complete combustion is based on empirical relationships, which are provided in the paper and may be helpful in planning the assisted combustion of low methane gases (not suitable for further use) using a flare.
PL
W artykule omówiono zagadnienia zrzutu zasolonych wód poeksploatacyjnych do porowatych warstw chłonnych o niskim ciśnieniu złożowym – z zastosowaniem pompy lub bez niej. Podano warunki, jakie musi spełniać warstwa chłonna, oraz klasyfikację odwiertów zrzutowych według amerykańskiej Agencji Ochrony Środowiska (EPA) ze względu na ochronę wód pitnych. Zasygnalizowano, jakie warunki musi spełniać solanka wprowadzana do ośrodka porowatego, w tym dotyczące jej składu chemicznego, zawartości ciał stałych, obecności bakterii oraz zawartości olejów i tłuszczów. Podano sposoby określenia przepuszczalności warstwy o niskim ciśnieniu złożowym, z której brak jest samoczynnego wypływu i lustro cieczy stabilizuje się na pewnej głębokości poniżej poziomu terenu, w tym omówiono metodę tzw. slug test oraz metodę INiG – PIB opracowaną przez autorów. Podano warunki techniczne, których spełnienie wymagane jest do prawidłowego przeprowadzenia slug testu. Omówiono wady i zalety poszczególnych metod określania przepuszczalności w odwiertach, w których nie ma produkcji samoczynnej, oraz sposoby interpretacji wyników, jak również podkreślono prostotę interpretacji metodą INiG – PIB w porównaniu z metodą slug testu, wymagającą wpasowania krzywych pomiarowych do krzywych teoretycznych. Podano sposób przybliżonej oceny objętości wody zasolonej, którą można wprowadzić do otworu „na chłonność”, to jest bez użycia pompy, przy maksymalnym ciśnieniu hydrostatycznym odpowiadającym wypełnieniu otworu solanką „do wierzchu”, oraz objętości, którą można wtłoczyć za pomocą pompy przy ciśnieniu niższym od ciśnienia szczelinowania warstwy porowatej. Podano przykład obliczeniowy.
EN
Discussed are the problems related to salt water discharge into low pressure porous rocks, with or without an injection pump. Specified are conditions which the porous rock should satisfy to be classified as an injection one. The American Environmental Protection Agency (EPA) classification of injection wells is given as well as regulations regarding protection of drinking water sources. Considered are low pressure wells which do not flow to the surface i.e. in which the water table stabilizes at some depth below the ground level. It is assumed that the full column hydrostatic pressure is used to force the salt water flow into porous rock. Provided are parameters which make the salt water suitable for injection. Provided are the regulations regarding its chemical composition, solids content, presence of bacteria and oil/grease content which the salt water should meet. Discussed are the methods for evaluation of permeability of porous rocks in wells with reservoir pressure lower than the pressure exerted by the full column of salt water. Included here are slug test method and INiG – PIB method which are routinely used for evaluation of permeability of low pressure porous zones. Discussed are advantages and disadvantages of each method and analyzed are the testing procedures related to each of them. Presented is the technique for approximate evaluation of salt water volume which can be introduced into porous rock without using the injection pump and salt water volume which can be injected at pressures lower than the fracturing pressure of porous rock. Presented are the example calculations.
|
2020
|
tom R. 76, nr 6
377--386
EN
W artykule przedstawiono porównanie metod wykorzystujących dane pomiarowe okresu przypływu do rurowego próbnika złoża (rpz) do obliczenia przepuszczalności i współczynnika skin efektu. Zestawiono wyniki uzyskane przy zastosowaniu „klasycznej” metody wpasowania krzywych pomiarowych do krzywych teoretycznych oraz wyniki metody podanej w pracy Szpunara (2001). Wykazano, że wyniki obydwu metod nie różnią się w sposób istotny. Omówiono zalety i niedogodności każdej z nich. Metoda opisana przez Szpunara (2001) i rozwinięta przez Szpunara i Budaka (2012) może być zastosowana do interpretacji zachowania ciśnienia dennego lub przebiegu podnoszenia się lustra wody w otworach odwierconych w warstwach węgli oraz studniach wierconych, w których nie ma produkcji samoczynnej, co wymaga wywołania zaburzenia ciśnienia w odwiercie przez wlanie do niego lub odpompowanie z niego porcji cieczy. Poza obliczeniem przepuszczalności i współczynnika skin efektu metoda przedstawiona przez Szpunara (2001) umożliwia określenie przepuszczalności strefy przyodwiertowej oraz głębokości uszkodzenia/poprawy przepuszczalności w strefie przyodwiertowej, pod warunkiem że opory przepływu w przewodzie rurowego próbnika złoża (rpz) są pomijalnie małe. „Klasyczna” metoda określania przepuszczalności przez wpasowanie krzywej pomiarowej do krzywych teoretycznych nie stwarza takich możliwości. Ponadto, zdaniem autorów, „klasyczna” metoda wpasowania krzywych (pomimo jej teoretycznej poprawności) daje wyniki niepewne z uwagi na trudności w dopasowaniu pomierzonej krzywej zależności ciśnienia od czasu do właściwej krzywej teoretycznej, których kształt jest bardzo podobny. Podsumowując, należy stwierdzić, że istnieje akceptowalna zgodność między przepuszczalnością obliczoną przy użyciu każdej z omawianych metod. Nie należy jednak oczekiwać, że przepuszczalność obliczona każdą z tych metod będzie identyczna.
PL
W artykule przedstawiono algorytm obliczeń ciepła spalania, wartości opałowej oraz liczby Wobbego, jak również procentowej zawartości wodoru w gazie magazynowanym w komorze wykonanej w utworach soli (złoże pokładowe lub wysad solny) oraz w gazie pobieranym w dowolnym momencie z takiej komory. Uwzględniono możliwość obecności składników niepalnych w mieszaninie gazów oraz ich wpływ na ciepło spalania / wartość opałową. Podano przykład obliczeniowy.
EN
The paper presents the algorithm which may be used to calculate the hydrogen content (volumetric percents), heating value, calorific value and Wobbe number of gas collected from the salt cavern built in salt formations (salt deposit or salt dome) at every moment of cavern exploitation. The possibility of the presence of non-flammable components in the gas mixture and their effect on the heat of combustion / calorific value were considered. Provided is the example calculation.
PL
Artykuł poświęcony jest metodom określania wydatku krytycznego w odwiertach pionowych i poziomych eksploatujących ropę naftową i gaz ziemny w stanie pseudoustalonym i nieustalonym. Podano szereg zależności do ustalania wydatku krytycznego dla rozmaitych konfiguracji, tj. rodzaju odwiertu (poziomy/pionowy), charakteru dopływu medium złożowego (pseudoustalony/nieustalony) oraz rodzaju medium (gaz ziemny/ropa naftowa) opracowanych przez rozmaitych autorów, poświęcając szczególną uwagę metodzie Chaperon – jako jedynej mającej podstawy teoretyczne. Podano zaproponowane przez autorów bardzo proste wzory, które mogą służyć do orientacyjnej oceny wielkości wydatku krytycznego, i losowo porównano wyniki z otrzymanymi za pomocą metody Chaperon, stwierdzając dającą się zaakceptować rozbieżność wyników, pomimo że w modelu Chaperon w przypadku odwiertu poziomego przyjmowano inne założenia odnośnie do kształtu obszaru drenowanego przez odwiert i charakteru przepływu. Zależności te wykorzystywane są do interpretacji zachowania ciśnienia przy radialnym dopływie ropy naftowej i gazu ziemnego do odwiertu pionowego i poziomego. Podane zależności oparte są na powszechnie znanych wzorach wiążących ciśnienie denne ruchowe w odwiercie z natężeniem dopływu medium złożowego. W artykule zestawiono rozmaite korelacje służące do określania wydatku krytycznego proponowane przez rozmaitych autorów opracowane przy przyjęciu rozmaitych założeń. Rozbieżności wyników poszczególnych korelacji dla tego samego zestawu danych proponowanych przez różnych autorów mogą dochodzić do kilkuset procent, co uzmysławia złożoność zagadnienia zawadniania się odwiertów eksploatacyjnych i trudność realistycznego opisu tego zjawiska. Korelacje podane w tekście artykułu opracowano na podstawie modeli analogowych lub na podstawie badań laboratoryjnych.
EN
The article discusses the methods used for evaluation of the critical flow rate in vertical and horizontal wells in case of oil or natural gas flow. The transient and pseudo-steady flow is considered. Various relations used for evaluation of critical flow rate for vertical/horizontal wells proposed by several authors have been provided. Special attention has been paid to Chaperon model which is the only one having the theoretical foundation. Very simple equations which can be used for evaluation of critical flow rate, based on well-known and generally accepted equations relating the bottom hole pressure and flow rate have been proposed. Those equations relate the pressure behavior in oil and gas wells assuming the radial flow in the reservoir. Relations for vertical and horizontal wells have been provided. They can be used for approximate evaluation of critical flow rate which is the highest flow rate not causing inflow of water into oil or gas well. Of course there are discrepancies between results given by Chaperon and the proposed methods but they are not very large and are acceptable from the technical point of view. One should remember that in case of the horizontal wells the Chaperon model assumes rectangular shape of drainage area while the methods proposed in this paper use the circular drainage area and radial flow. It should be noted that the critical flow rates evaluated using various methods provided in literature and listed in this article yield results which may differ by several hundred percent for the same set of input data – this indicates the complexity of the problem of water inflow to the production wells. Equations proposed by various authors are based on the analog models or results of the laboratory experiments.
|
2020
|
tom R. 76, nr 12
895--902
PL
Procedura określania przepuszczalności i skin efektu warstwy porowatej z danych okresu przypływu wymaga rejestracji zmienności dennego ciśnienia przypływu w funkcji czasu oraz sporządzenia wykresu zależności różnicy kwadratów ciśnień średniego złożowego i dennego ruchowego od logarytmu czasu przypływu i aproksymacji przebiegu punktów pomiarowych linią prostą metodą najmniejszych kwadratów. Przepuszczalność określana jest na podstawie nachylenia tej prostej. W metodzie tej zakłada się, że natężenie przepływu gazu podczas testu nie ulega zmianie, co jest założeniem problematycznym, gdyż w początkowym okresie przypływu szybko zmienia się depresja i gradient ciśnienia, a zatem wydatek gazu. Metoda znana jest od dziesięcioleci i nie jest tutaj omawiana. W niniejszym artykule zaproponowano nieco inny, prosty sposób przybliżonego określania przepuszczalności oparty na modelu matematycznym podanym przez Szpunara (2001). Podobnie jak w metodzie wspomnianej wyżej, wymagana jest rejestracja zmian ciśnienia dennego okresu przypływu w funkcji czasu i naniesienie punktów pomiarowych w prostokątnym układzie współrzędnych, gdzie w odróżnieniu od metody standardowej na osi rzędnych zaznaczany jest logarytm tzw. ciśnienia bezwymiarowego, a czas przypływu na osi odciętych. Przebieg punktów pomiarowych aproksymowany jest linią prostą metodą najmniejszych kwadratów, a przepuszczalność określa się na podstawie nachylenia tej linii oraz bilansu masy przez porównanie masy gazu wydobytego z masą gazu przewidzianą przez model. W artykule podano przykłady obliczeniowe. Ze względu na brak danych pochodzących z odwiertów z krajowego przemysłu naftowego metodę przetestowano na danych zaczerpniętych z literatury. Rozbieżność wyników interpretacji testów przypływu metodą standardową i opisywaną w artykule jest niewielka (rzędu kilku procent) i mieści się w akceptowalnych granicach.
EN
The routine procedure for evaluation of the permeability and skin of the gas zone consists in flowing the gas well until the bottomhole pressure is nearly stabilized. The pressure values must be recorded versus time of flow, initial reservoir pressure must be known and the constant flow rate should be maintained during the flow test. The permeability and skin are calculated using the straight line approximation of bottomhole pressures versus logarithm of flowing time, and the permeability is calculated using the slope of this line. The standard method for calculation of permeability and skin is known for decades and will not be discussed here. This paper proposes somewhat different technique for calculation of permeability which is based on mathematical model of gas flow in porous rocks given by Szpunar (2001). The total volume of gas produced during the flow period is used for calculation of permeability instead of using the flow rate which is never known precisely. The reliability of the calculated results is checked by comparing the total mass of gas produced during the flow test (evaluated at standard conditions of temperature and pressure) with the mass of gas evacuated from the reservoir predicted by the mathematical model. The article provides calculation examples. Because no data from domestic oil industry was available, the method was tested using the data from technical literature. The discrepancies between the results of both methods are within the acceptable range of a few percent.
|
2020
|
tom R. 76, nr 4
239--248
PL
Rozpoczęcie eksploatacji każdego nowego odwiertu gazowego wymaga wykonania wcześniejszej oceny jego możliwości produkcyjnych, to jest określenia wielkości przypływu gazu do odwiertu przy danej depresji. Jest to podstawą planowania eksploatacji gazu z danego odwiertu. Oceny takiej dokonuje się poprzez przeprowadzenie w odwiertach klasycznych i zmodyfikowanych testów produkcyjnych. Testy produkcyjne wykonywane są również w sytuacjach, gdy zachodzi potrzeba uaktualnienia możliwości wydobywczych złoża lub poszczególnych odwiertów. Wadą tego typu testów jest konieczność przerwania eksploatacji gazu i zamykania odwiertów w celu uzyskania, między innymi, warunków stabilizacji ciśnień, a czas zamknięcia zależy od przepuszczalności złoża i w przypadku złóż o małej przepuszczalności może być długi. Interpretacja testów produkcyjnych oparta jest na teoretycznej zależności określanej mianem tzw. formuły dwuczłonowej. Jeżeli jej współczynniki przepływu laminarnego i turbulentnego (a i b) są znane, to możliwe jest podanie wielkości wydobycia potencjalnego gazu przy danej depresji, czyli zaplanowanie eksploatacji odwiertu. Okresowe uaktualnianie postaci formuły dwuczłonowej wymagane jest zarówno przez przepisy, jak i ze względów technicznych. Niedogodności związane z przeprowadzeniem klasycznych testów produkcyjnych służących do ustalenia charakterystyki wydobywczej odwiertu spowodowały, że opracowano inne metody wykonywania testów produkcyjnych, mające na celu skrócenie czasu pomiarów. W artykule podano sposoby przybliżonego określania współczynnika przepływu laminarnego formuły dwuczłonowej bez potrzeby zamykania odwiertu i pomiaru przebiegu odbudowy ciśnienia w funkcji czasu w celu oceny średniego ciśnienia złożowego. Znajomość współczynnika przepływu laminarnego pozwala na uaktualnienie postaci formuły dwuczłonowej, a na tej podstawie korygowanie przewidywanej wielkości dopływu gazu do odwiertu eksploatacyjnego przy określonej depresji. Zaletą prezentowanych metod jest skrócenie czasu wykonywania testowań, co powinno przynosić wymierne korzyści ekonomiczne poprzez ograniczenie kosztów przestoju odwiertu gazowego. Podano przykłady obliczeniowe dla odwiertów gazowych z krajowego przemysłu naftowego. Otrzymane wyniki obliczeń proponowanymi sposobami są w przybliżeniu zgodne z wynikami uzyskanymi przy użyciu klasycznych testów wielocyklowych. Podano również sposób określania współczynnika przepływu laminarnego i turbulentnego metodą analityczną przy dopuszczeniu różnego od 2 wykładnika formuły dwuczłonowej oraz warunki stosowalności tego sposobu. Zilustrowano to przykładami obliczeń dla odwiertów gazowych z krajowego przemysłu naftowego.
EN
The deliverability of each gas well must be known before the gas production is started which means that the relation between gas flow rate and bottom hole drown down pressure must be known in advance. The classical, isochronal and modified isochronal tests are used for this purpose. All of these tests should be able to calculate the coefficients of deliverability equation but laminar flow coefficient in particular because the turbulent flow coefficient doesn’t change much during well production period. In the paper proposed are techniques for approximate evaluation of laminar flow coefficient without closing the well for pressure build up and for evaluation of the average reservoir pressure. The laminar flow coefficient must be known to evaluate the relation between the gas flow rate and the drown down pressure. Provided are examples of calculation procedure using each of the techniques. Data from domestic gas industry were used to demonstrate usability of proposed methods. Obtained results of calculation of laminar flow coefficients using the proposed techniques are very close to results of the standard multi rate gas well deliverability test. The proposed method for calculation of laminar flow coefficient assumes that the exponent in deliverability formula may be different than two and that the flow rates must be equal to geometric average of the proceeding and the following rate which require to use the flow rate control choke. No such tests are used in industry but among hundreds of test data the authors succeeded to find a dozen or so which accidentally satisfied this requirements. The paper also provides another simple procedures for calculation of laminar flow coefficient which do not require closing the gas well for pressure buildup.
10
100%
EN
This paper presents a simple model which can be used to calculate the following values:  critical depth for which the well integrity is preserved in a shale or coal horizon with actual shale/coal mechanical parameters, actual mud density and reservoir parameters;  minimum mud density at which stress concentration at the wellbore wall is below the allowable limit for a given rock’s mechanical parameters, formation pressure gradient, and overburden pressure gradient;  mud density required for the preservation of shale/coal integrity at the wellbore wall at any depth, assuming that the strength parameters of shale or coal, formation pressure gradient, and overburden pressure gradient are constant. The appropriate equations were derived using the maximum principal strain hypothesis, which holds for brittle materials. It was also assumed that the radial pressure at the borehole wall is caused by the weight of overburden rocks. The author’s intention was to provide formulas which are as simple as possible and which can be easily used in practice. The final equations were based on the solution to the Lame problem, which was adopted to represent a vertical drilling well with a circular cross-section and filled with mud whose hydrostatic pressure is assumed to oppose the pore pressure. Included are effects of silt swelling pressure, overburden pressure, mud density and the mechanical properties of the rock – including the unconfined compressive strength and Poisson’ s ratio. In the case of shale or silty coal layers, the swelling pressure increases the volume of the clay minerals in the pores by diffusion the mud filtrate, which reduces the pore volume and increases the pore pressure, and therefore impacts the calculations. Presented model allows for derivation of the Hubert–Willis formula for fracturing pressure or fracture pressure gradient, which are commonly used in the oil industry. The calculation results are presented using data from the domestic oil industry and data from one of the Polish coal mines.
PL
W artykule podano prosty model umożliwiający obliczenie następujących wielkości:  głębokości krytycznej, w jakiej pokład łupków lub węgla zachowa integralność przy danych parametrach mechanicznych łupku lub węgla, danej gęstości płuczki i znanych parametrach złożowych;  minimalnej gęstości płuczki, przy której koncentracja naprężeń na ścianie otworu nie przekracza granicy dopuszczalnej dla danych parametrów mechanicznych łupku lub węgla oraz gradientu ciśnienia i nadkładu;  gęstości płuczki, przy której zachowana będzie integralność ścian otworu w warstwach łupku lub węgla w każdej głębokości dla danych parametrów mechanicznych łupku, przy stałym gradiencie ciśnienia i nadkładu. Wyprowadzono odpowiednie wzory, przyjmując hipotezę wytrzymałościową maksymalnego wytężenia materiału stosowaną w przypadku materiałów kruchych. Przyjęto również, że przy założeniu odkształceń sprężystych ciśnienie radialne na ścianie otworu jest spowodowane ciężarem skał nadkładu. Intencją autorów było podanie możliwie jak najprostszych wzorów, które mogłyby zostać zastosowane w praktyce. Wykorzystano rozwiązania tzw. problemu Lamégo, to jest rozpatrywano stan naprężeń na ścianie pionowego wyrobiska o przekroju kołowym, traktując skałę jako materiał sprężysty. We wzorach na wielkość naprężeń na ścianie wyrobiska o przekroju w kształcie okręgu uwzględniono wpływ ciśnienia pęcznienia, ciśnienia wywieranego przez nadkład, gęstość płuczki, jak również parametry wytrzymałościowe łupku/węgla, w tym wytrzymałość na ściskanie w jednoosiowym stanie naprężeń i współczynnik Poissona. W przypadku warstw łupków lub węgli zailonych ciśnienie pęcznienia powoduje zwiększenie objętości minerałów ilastych w porach w wyniku dyfuzji filtratu płuczki, co zmniejsza objętość porów i zwiększa ciśnienie porowe, a zatem wpływa na wyniki obliczeń. Przedstawiony model pozwala na wyprowadzenie z niego powszechnie stosowanego w przemyśle wzoru Huberta–Willisa, podającego wielkość ciśnienia szczelinowania skał na ścianie otworu oraz gradientu ciśnienia szczelinowania. Przedstawiono wyniki obliczeń dla danych z otworów z krajowego przemysłu naftowego oraz jednej z polskich kopalni węgla kamiennego.
|
2020
|
tom R. 76, nr 11
799--806
PL
Podziemne magazyny gazu ziemnego budowane są w wyeksploatowanych złożach gazu lub w kawernach solnych wykonanych metodą ługowania soli ze złóż pokładowych lub wysadów solnych. Magazyny gazu ziemnego wykonane w masywie solnym umożliwiają bardzo szybkie dostarczenie do sieci dystrybucyjnej dużych ilości gazu oraz pozwalają na szybkie wprowadzenie do komory magazynowej nadmiaru gazu ziemnego obecnego na rynku. Gaz do komór magazynowych wprowadzany jest w razie jego nadmiaru na rynku oraz pobierany w przypadku potrzeby pokrycia zapotrzebowań szczytowych. Magazynowanie gazu ziemnego pozwala więc na zniwelowanie fluktuacji zapotrzebowania na gaz, które są szczególnie wyraźne w okresie zimowym. Gaz ziemny pobierany z komory magazynowej musi spełniać odpowiednie wymagania dotyczące jego parametrów energetycznych przed wprowadzeniem go do sieci dystrybucyjnej – musi on mieć odpowiednie ciepło spalania i wartość opałową, a dodatek wodoru do gazu obniża te parametry, tak więc znajomość parametrów gazu aktualnie obecnego w komorze magazynowej ma znaczenie zasadnicze. Oprócz dodatku wodoru na parametry energetyczne mieszaniny gazów aktualnie zmagazynowanej w komorze wpływają również skład i parametry wprowadzanej do komory porcji gazu zmieszanego z wodorem, gdyż dostarczany do magazynu gaz ziemny może pochodzić z różnych źródeł. Zawartość poszczególnych składników gazu zatłaczanego do podziemnych magazynów gazu musi być utrzymywana w granicach ustalonych przez operatora. W artykule przedstawiono algorytm i program do obliczeń ciepła spalania, wartości opałowej oraz liczby Wobbego, jak również procentowej zawartości wodoru w gazie w komorze magazynowej oraz gazie pobieranym w dowolnym momencie z komory. Uwzględniono możliwość obecności składników niepalnych w mieszaninie oraz ich wpływ na ciepło spalania / wartość opałową. Podano przykład obliczeniowy.
EN
Underground gas stores are built in depleted gas reservoirs or in salt domes or salt caverns. In the case of salt caverns, the store space for gas is created by leaching the salt using water. Gas stores in salt caverns are capable to provide the distribution network with large volumes of gas in a short time and cover the peak demand for gas. The salt caverns are also capable to store large volumes of gas in case when there is too much gas on a market. Generally, the salt caverns are used to mitigate the fluctuation of gas demand, specifically during winter. The gas provided to the distribution network must satisfy the requirements regarding its heating value, calorific value, volumetric content of hydrogen and the Wobbe number. Large hydrogen content reduces the calorific value as well as the heating value of gas and thus its content must be regulated to keep these values at the acceptable level. One should also remember that every portion of gas which was used to create the gas/hydrogen mixture may have different parameters (heating value and calorific value) because it may come from different sources. The conclusion is that the hydrogen content and the heating value must be known at every moment of gas store exploitation. The paper presents an algorithm and a computer program which may be used to calculate the hydrogen content (volumetric percentage), heating value and calorific value (plus the Wobbe number) of gas collected from the salt cavern at every moment of cavern exploitation. The possibility of the presence of non-flammable components in the mixture and their effect on the heat of combustion / calorific value were considered. An exemplary calculation is provided.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.