In this work, aluminum (Al)-based nanocomposites reinforced with graphite nanoplatelets (GnPs) have been fabricated by conventional sintering as well as spark plasma sintering (SPS) techniques, and their microstructure and mechanical properties have been studied. The powder metallurgy (PM) route has been adopted to fabricate the various Al–GnP nanocomposites. Characterization of the powder mixtures and the nanocomposites has been carried out through different characterization techniques, such as X-ray diffraction (XRD), scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and Raman spectroscopy. Compressive strength, Young's modulus, density, and Vickers microhardness of the various nanocomposites have also been determined. The HRTEM results show the formation of nonstoichiometric Al4C3 nanoparticles – during both conventional sintering and SPS – at the interface of the Al grains and GnP, which worsen the mechanical properties of the nanocomposites. SPSed nanocomposites show superior mechanical properties due to higher densification, finer grain size, and homogeneous nanofiller dispersion in the Al matrix, compared to the conventionally sintered Al–GnP nanocomposites.
2
Dostęp do pełnego tekstu na zewnętrznej witrynie WWW
This study reports on the exfoliation of bulk hexagonal boron nitride (hBN) by high-energy ball milling and the development of Al-hBN (alumninum-hexagonal boron nitride) nanocomposites by the powder metallurgy (PM) route via the incorporation of the exfoliated hBN in the Al matrix as a nanoreinforcement. The effect of ball milling on the morphology, crystallite size, lattice strain, and thermal stability of hBN powder have also been reported in this paper. Commercially available bulk hBN was ball milled for up to 30 hours in a high-energy planetary ball mill in order to exfoliate the hBN. Although no new phases were formed during milling, which was confirmed by the XRD (x-ray powder diffraction) spectra, ball milling resulted in the attachment of functional groups like hydroxyl (OH) and amino (NH2) groups on the surface of the hBN, which was confirmed by FTIR (Fourier Transform Infrared Spectroscopy) analysis. HRTEM (high resolution transmission electron microscopy) analysis confirmed the synthesis of hBN having few atomic layers of hBN stacked together after 20 hours of milling. After 20 hours of milling, the hBN particle size was reduced from ~1 μm to ~400 nm, while the crystallite size of the 20-hourmilled hBN powder was found to be ~18 nm. Milling resulted in a flake-like structure in the hBN. Although milling involved both exfoliation as well as reagglomeration of the hBN particles, a significant decrease in the diameter of the hBN particles and their thickness was observed after a long period of milling. The average thickness of the 20-hour-milled hBN flakes was found to be ~32.61 nm. HRTEM analysis showed that the hexagonal structure of the milled hBN powder was maintained. Al-based nanocomposites reinforced with 1%, 2%, 3%, and 5% by weight hBN were fabricated by PM route. The Al-hBN powder mixtures were cold-compacted and sintered at 550◦C for 2 hours in argon (Ar) atmosphere. The maximum relative density of ~94.11% was observed in the case of Al-3 wt.% hBN nanocomposite. Al-3 wt.% hBN nanocomposite also showed a significant improvement in hardness and wear resistance compared to the pure Al sample that was developed in a similar fashion. The maximum compressive strength of ~999 MPa was observed in the case of Al-3 wt.% hBN nanocomposite and was approximately twice that of the pure Al sample developed in a similar fashion.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.