A class ℱ of universal algebras is called a formation if the following conditions are satisfied: 1) Any homomorphic image of A ∈ ℱ is in ℱ; 2) If α₁, α₂ are congruences on A and $A/α_{i} ∈ ℱ$, i = 1,2, then A/(α₁∩α₂) ∈ ℱ. We prove that any formation generated by a simple algebra with permutable congruences is minimal, and hence any formation containing a simple algebra, with permutable congruences, contains a minimum subformation. This result gives a partial answer to an open problem of Shemetkov and Skiba on formations of finite universal algebras proposed in 1989.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.