The method of boundary curve reparametrization is generalized to the case of multiply connected domains. We construct the approximate analytical conformal mapping of the unit disk with m circular slits and n-m radial slits and an annulus with (m-1) circular slits and n-m radial slits onto an arbitrary given (n+1) multiply connected finite domain with a smooth boundary. The method is based on extension of the Lichtenstein-Gershgorin equation to a multiply connected domain. The proposed method is reduced to the solution of a linear system with unknown Fourier coefficients. The approximate mapping function has the form of a Cauchy integral. Numerical examples demonstrate that the proposed method is effective in computations.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.