Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 5

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The aim of this study is to assess the quality of water for drinking in the rural area of the city of Al-Hoceima, in order to measure the health risks to which people who use it for their needs are exposed. A cross-sectional, descriptive, and analytical study was carried out on 60 households selected randomly. Well and spring water samples (8 wells and 8 springs) were collected in November and December 2019 and analyzed according to the standard methods of water analysis. The survey indicated that water consumed by 80.00% of households does not receive any prior treatment. With the lack of a collective excreta and wastewater management system in the municipality, 99.00% of households have latrines, 50.00% of which are installed within 15meters of the water source. The bacteriological analyses indicate that all the sampled points are contaminated by fecal contamination germs. This poor quality may be due to various anthropogenic activities, and the presence of non-standardized septic tanks. Therefore, protecting and improving water sources must be accompanied by adequate measures of disinfection of these waters before their use.
EN
Groundwater is crucial for meeting the water needs of rural communities, serving both domestic and agricultural purposes. However, its quality in our study area remains unclear. Therefore, the primary objective of the current study is to evaluate the groundwater quality and ascertain the level of contamination risk associated with the use of septic tanks in rural communities within the Al Hoceima province. This will be achieved by conducting a comprehensive analysis of physicochemical parameters and employing effective indices, including the Water Quality Index (WQI), Nitrate Pollution Index (NPI), and Chronic Health Risk (CHR). In February 2023, we collected samples from 33 wells, spanning densely and sparsely populated regions, to account for potential variations in water quality. The analyzed parameters included pH, total dissolved solids (TDS), electrical conductivity (EC), ammonium (NH4+), nitrates (NO3-), nitrites (NO2-), sodium (Na+), potassium (K+), calcium (Ca2+), magnesium (Mg2+), chloride (Cl-), sulfate (SO42-), bicarbonate (HCO3-), phosphate (PO43-), and silica (SiO2). Our findings revealed slightly alkaline groundwater with TDS levels ranging from 1508.63 mg/l to 8289.8 mg/l, with an average of 3223.19 mg/l. The cation dominance sequence observed was Na+ > Ca2+ > Mg2+ > K+ >NH4+, while for anions, it followed as SO42- > Cl- > HCO3- > NO3- > PO43- > NO2-. The Water Quality Index (WQI) indicated contamination in 54.55% of the wells, with notably higher NPI values in densely populated regions. This suggests anthropogenic nitrate contamination, likely originating from septic tanks. The assessment of Chronic Health Risk (CHR) revealed non-carcinogenic health risks in 27.27% of samples for children and 15.15% for adults. Given these findings, it is imperative for Moroccan authorities, despite the efforts of the Loukkos Hydraulic Basin Agency (LHBA), to implement strategic measures to protect groundwater quality in densely populated rural regions.
EN
The rainfall irregularity in the Al-Hoceima area places the Ghis-Nekor coastal aquifer as a primary resource for water supply. However, it is of paramount priority to adopt management and optimization plans that can mitigate the effects of the irrational use of the resource and the deterioration of its quality in the region of our study. In order to study the alteration aspects of this aquifer, 26 wells were sampled and their suitability for irrigation was assessed. The sodium adsorption rate (SAR) values indicate that most groundwater samples fall into the risk classes of high salinity and low sodium (C3-S1) and high salinity and medium sodium (C3-S2). The results also show a medium to high alkalinity risk due to the high concentration of HCO3-. The excess of salts is largely due to the intensive exploitation of groundwater and to the phenomenon of salt-water intrusion into the coastal karst aquifer. As a result, the quality of groundwater is not adapted to sustainable agricultural production and soil balance, which requires controlled monitoring to ensure its rational use with a view to the sustainable development of the region.
EN
The present study aimed to evaluate the effects of human anthropic activities on the physicochemical and biological properties as well as the quantity of the groundwater in the central Rif of Morocco. Series of analyses were carried out on the water resources of this area. The interpretation of analytical data and the distribution of groundwater into groups were treated using multivariate statistical methods including Principal Component Analysis (PCA) and the Ascending Hierarchical Classification (CHA). The results of the present study showed strong mineralization of the investigated area waters. This study also indicated the impact of anthropogenic activities and their influences on the quality of groundwater in the central Rif, with the presence of total coliforms, fecal Escherichia coli type, and fecal streptococci intestinal enterococcal type, suggesting that the contamination of this groundwater was induced by human pollution. In addition, the infiltration of groundwater by wastewater from septic tanks, the use of wastewater for irrigation purposes, the increased use of fertilizers and pesticides in agriculture, and irregular rainfall in the region constitute the main factors of anthropogenic contamination of groundwater in the study area.
EN
Morocco is currently facing significant challenges due to the ever–changing climate, with its critical water sources crucial for agriculture, economy, and daily life being greatly affected. In order to thoroughly understand the impact of climate change on the Ghis–Nekor watershed, an in–depth study spanning 38 years (1978–2016) was conducted. This involved examining the meteorological data from three stations and utilizing advanced indices, such as SPI, RDI, and DI. The findings of this study revealed prominent shifts in precipitation patterns, indicating a vulnerability in the region. While there was a general increase in annual rainfall during the specified time period, a sharp decline was observed post–2008. Further analysis of drought confirmed the presence of persistent dry spells and recurring episodes, highlighting the urgent need for effective water management strategies. These crucial findings must be considered by decision–makers for successful climate adaptation, emphasizing the key role played by this study in mitigating the effects of climate change.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.