Nowa wersja platformy, zawierająca wyłącznie zasoby pełnotekstowe, jest już dostępna.
Przejdź na https://bibliotekanauki.pl
Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników

Znaleziono wyników: 1

Liczba wyników na stronie
first rewind previous Strona / 1 next fast forward last
Wyniki wyszukiwania
help Sortuj według:

help Ogranicz wyniki do:
first rewind previous Strona / 1 next fast forward last
EN
The effective utilisation of monitoring data of the coal mine is the core of realising intelligent mine. The complex and challenging underground environment, coupled with unstable sensors, can result in “dirty” data in monitoring information. A reliable data cleaning method is necessary to figure out how to extract high-quality information from large monitoring data sets while minimising data redundancy. Based on this, a cleaning method for sensor monitoring data based on stacked denoising autoencoders (SDAE) is proposed. The sample data of the ventilation system under normal conditions are trained by the SDAE algorithm and the upper limit of reconstruction errors is obtained by Kernel density estimation (KDE). The Apriori algorithm is used to study the correlation between monitoring data time series. By comparing reconstruction errors and error duration of test data with the upper limit of reconstruction error and tolerance time, cooperating with the correlation rule, the “dirty” data is resolved. The method is tested in the Dongshan coal mine. The experimental results show that the proposed method can not only identify the dirty data but retain the faulty information. The research provides effective basic data for fault diagnosis and disaster warning.
first rewind previous Strona / 1 next fast forward last
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.