It is well established that the normalized exceedances resulting from a standard stationary Gaussian triangular array at high levels follow a Poisson process under the Berman condition. To model frequent cluster phenomena, we consider the asymptotic distribution of the point process of clusters for a Gaussian random field on a lattice. Our analysis demonstrates that the point process of clusters also converges to a Poisson process in distribution, provided that the correlations of the Gaussian random field meet certain conditions. Additionally, we provide a numerical example to illustrate our theoretical results.
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.