To establish the coating conditions for 57 Co, non-radioactive Co ions are dissolved in an acid solution and electroplated on to a rhodium plate. The thermal diffusion of electroplated Co into a rhodium matrix was studied to apply a 57 Co Mössbauer source. The procedure to form a Co deposited onto Rh foil was established using two different electroplating baths: the acid-based buffer (pH 3) containing boric acid, sodium chloride, and saccharin, and the alkaline-based buffer (pH 10) containing hydrazine hydrate and ammonium citrate. The influence of different annealing conditions was investigated. From the results, the best diffusion degree of electrodeposited Co onto the rhodium matrix was obtained in an annealing process performed at 1100°C for 3 h in vacuum over 10-5 hPa.
Withania somnifera is an important medicinal plant and used to cure many diseases. Direct regeneration method was standardized for the nodal explants of W. somnifera. In this method, the maximum of 42.4 ± 2.68 shoots produced per explant was achieved at 1.5 mg l⁻¹ BAP with 0.3 mg l⁻¹ IAA in the second subculture. Transformation was performed in the nodal explants of W. somnifera via direct regeneration using Agrobacterium tumefaciens strain EHA105 that harbored a binary vector pGA492, which carrying kanamycin resistant (nptII), phosphinothricin resistant (bar) and an intron containing β-glucuronidase (gus-intron) genes. The sensitivity of nodal explants to kanamycin (300 mg l⁻¹) was determined for the selection of transformed plants. Transformation was confirmed by histochemical β-glucuronidase (GUS) assay and amplification of the nptII gene by polymerase chain reaction (PCR). PCR and southern blot analyses confirmed the integration of nptII gene in the genome of W. somnifera and the transformation frequency of 3.16 % has been achieved. This is the first report on the genetic transformation of W. somnifera using nodal explants, which may aid in the transformation of any other character gene for improving therapeutic value.